Motivic cohomology and infinitesimal group schemes

IF 0.5 Q3 MATHEMATICS
Eric Primozic
{"title":"Motivic cohomology and infinitesimal group schemes","authors":"Eric Primozic","doi":"10.2140/akt.2022.7.441","DOIUrl":null,"url":null,"abstract":"For $k$ a perfect field of characteristic $p>0$ and $G/k$ a split reductive group with $p$ a non-torsion prime for $G,$ we compute the mod $p$ motivic cohomology of the geometric classifying space $BG_{(r)}$, where $G_{(r)}$ is the $r$th Frobenius kernel of $G.$ Our main tool is a motivic version of the Eilenberg-Moore spectral sequence, due to Krishna. \nFor a flat affine group scheme $G/k$ of finite type, we define a cycle class map from the mod $p$ motivic cohomology of the classifying space $BG$ to the mod $p$ etale motivic cohomology of the classifying stack $\\mathcal{B}G.$ This also gives a cycle class map into the Hodge cohomology of $\\mathcal{B}G.$ We study the cycle class map for some examples, including Frobenius kernels.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2022.7.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For $k$ a perfect field of characteristic $p>0$ and $G/k$ a split reductive group with $p$ a non-torsion prime for $G,$ we compute the mod $p$ motivic cohomology of the geometric classifying space $BG_{(r)}$, where $G_{(r)}$ is the $r$th Frobenius kernel of $G.$ Our main tool is a motivic version of the Eilenberg-Moore spectral sequence, due to Krishna. For a flat affine group scheme $G/k$ of finite type, we define a cycle class map from the mod $p$ motivic cohomology of the classifying space $BG$ to the mod $p$ etale motivic cohomology of the classifying stack $\mathcal{B}G.$ This also gives a cycle class map into the Hodge cohomology of $\mathcal{B}G.$ We study the cycle class map for some examples, including Frobenius kernels.
动机上同调与无穷小群格式
对于$k$一个具有特征$p>0$的完美域和$G $一个具有$p$一个非挠素数的分裂约化群,我们计算了几何分类空间$BG_{(r)}$的模$p$动机上同调,其中$G_{(r)}$是$G的$r$ Frobenius核。我们的主要工具是一个动机版本的Eilenberg-Moore谱序列,由于克里希纳。对于有限型平面仿射群方案$G/k$,我们定义了一个从分类空间$BG$的mod $p$动机上同调到分类堆栈$\mathcal{B}G的mod $p$动机上同调的循环类映射。这也给出了一个循环类映射到$\mathcal{B}G的Hodge上同调。我们研究了循环类映射的一些例子,包括Frobenius核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信