The evolution of immersed locally convex plane curves driven by anisotropic curvature flow

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yaping Wang, Xiaoliu Wang
{"title":"The evolution of immersed locally convex plane curves driven by anisotropic curvature flow","authors":"Yaping Wang, Xiaoliu Wang","doi":"10.1515/anona-2022-0245","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the evolution of immersed locally convex plane curves driven by anisotropic flow with inner normal velocity V = 1 α ψ ( x ) κ α V=\\frac{1}{\\alpha }\\psi \\left(x){\\kappa }^{\\alpha } for α < 0 \\alpha \\lt 0 or α > 1 \\alpha \\gt 1 , where x ∈ [ 0 , 2 m π ] x\\in \\left[0,2m\\pi ] is the tangential angle at the point on evolving curves. For − 1 ≤ α < 0 -1\\le \\alpha \\lt 0 , we show the flow exists globally and the rescaled flow has a full-time convergence. For α < − 1 \\alpha \\lt -1 or α > 1 \\alpha \\gt 1 , we show only type I singularity arises in the flow, and the rescaled flow has subsequential convergence, i.e. for any time sequence, there is a time subsequence along which the rescaled curvature of evolving curves converges to a limit function; furthermore, if the anisotropic function ψ \\psi and the initial curve both have some symmetric structure, the subsequential convergence could be refined to be full-time convergence.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0245","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this article, we study the evolution of immersed locally convex plane curves driven by anisotropic flow with inner normal velocity V = 1 α ψ ( x ) κ α V=\frac{1}{\alpha }\psi \left(x){\kappa }^{\alpha } for α < 0 \alpha \lt 0 or α > 1 \alpha \gt 1 , where x ∈ [ 0 , 2 m π ] x\in \left[0,2m\pi ] is the tangential angle at the point on evolving curves. For − 1 ≤ α < 0 -1\le \alpha \lt 0 , we show the flow exists globally and the rescaled flow has a full-time convergence. For α < − 1 \alpha \lt -1 or α > 1 \alpha \gt 1 , we show only type I singularity arises in the flow, and the rescaled flow has subsequential convergence, i.e. for any time sequence, there is a time subsequence along which the rescaled curvature of evolving curves converges to a limit function; furthermore, if the anisotropic function ψ \psi and the initial curve both have some symmetric structure, the subsequential convergence could be refined to be full-time convergence.
各向异性曲率流驱动下浸入局部凸平面曲线的演化
摘要在本文中,我们研究了由各向异性流驱动的浸入局部凸平面曲线的演化,内法向速度V=1αψ(x)κ。对于−1≤α<0-1\le\alpha\lt 0,我们证明了流是全局存在的,并且重新缩放的流具有全时收敛性。对于α<−1\alpha\lt-1或α>1\alpha\gt 1,我们表明只有I型奇异性出现在流中,并且重新缩放的流具有后续收敛性,即对于任何时间序列,都存在一个时间子序列,演化曲线的重新缩放曲率沿着该时间子序列收敛到极限函数;此外,如果各向异性函数ψ\psi和初始曲线都具有某种对称结构,则后续收敛可以细化为全时收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信