{"title":"Decision Making and Games with Vector Outcomes","authors":"Jaeok Park","doi":"10.1515/bejte-2018-0170","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study decision making and games with vector outcomes. We provide a general framework where outcomes lie in a real topological vector space and the decision maker’s preferences over outcomes are described by a preference cone, which is defined as a convex cone satisfying a continuity axiom. Further, we define a notion of utility representation and introduce a duality between outcomes and utilities. We provide conditions under which a preference cone is represented by a utility and is the dual of a set of utilities. We formulate a decision-making problem with vector outcomes and study optimal choices. We also consider games with vector outcomes and characterize the set of equilibria. Lastly, we discuss the problem of equilibrium selection based on our characterization.","PeriodicalId":44773,"journal":{"name":"B E Journal of Theoretical Economics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bejte-2018-0170","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"B E Journal of Theoretical Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/bejte-2018-0170","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we study decision making and games with vector outcomes. We provide a general framework where outcomes lie in a real topological vector space and the decision maker’s preferences over outcomes are described by a preference cone, which is defined as a convex cone satisfying a continuity axiom. Further, we define a notion of utility representation and introduce a duality between outcomes and utilities. We provide conditions under which a preference cone is represented by a utility and is the dual of a set of utilities. We formulate a decision-making problem with vector outcomes and study optimal choices. We also consider games with vector outcomes and characterize the set of equilibria. Lastly, we discuss the problem of equilibrium selection based on our characterization.
期刊介绍:
We welcome submissions in all areas of economic theory, both applied theory and \"pure\" theory. Contributions can be either innovations in economic theory or rigorous new applications of existing theory. Pure theory papers include, but are by no means limited to, those in behavioral economics and decision theory, game theory, general equilibrium theory, and the theory of economic mechanisms. Applications could encompass, but are by no means limited to, contract theory, public finance, financial economics, industrial organization, law and economics, and labor economics.