Ultrametrics and Complete Multipartite Graphs

Q4 Mathematics
V. Bilet, O. Dovgoshey, Yu. M. Kononov
{"title":"Ultrametrics and Complete Multipartite Graphs","authors":"V. Bilet, O. Dovgoshey, Yu. M. Kononov","doi":"10.20429/tag.2022.090108","DOIUrl":null,"url":null,"abstract":"We describe the class of graphs for which all metric spaces with diametrical graphs belonging to this class are ultrametric. It is shown that a metric space (X, d) is ultrametric iff the diametrical graph of the metric dε(x, y) = max{d(x, y), ε} is either empty or complete multipartite for every ε > 0. A refinement of the last result is obtained for totally bounded spaces. Moreover, using complete multipartite graphs we characterize the compact ultrametrizable topological spaces. The bounded ultrametric spaces, which are weakly similar to unbounded ones, are also characterized via complete multipartite graphs.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2022.090108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

We describe the class of graphs for which all metric spaces with diametrical graphs belonging to this class are ultrametric. It is shown that a metric space (X, d) is ultrametric iff the diametrical graph of the metric dε(x, y) = max{d(x, y), ε} is either empty or complete multipartite for every ε > 0. A refinement of the last result is obtained for totally bounded spaces. Moreover, using complete multipartite graphs we characterize the compact ultrametrizable topological spaces. The bounded ultrametric spaces, which are weakly similar to unbounded ones, are also characterized via complete multipartite graphs.
超度量与完全多部图
我们描述了一类图,对于这类图,具有直径图的所有度量空间都是超度量的。证明了度量空间(X,d)是超度量的,当度量d的直径图ε(X,y)=max{d(X,y),ε}对于每个ε>0为空或完全多部分时。对于完全有界空间,得到了最后一个结果的精化。此外,利用完全多部分图刻画了紧致超可度量拓扑空间。与无界空间弱相似的有界超度量空间也通过完全多部分图来刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信