IoT data cleaning techniques: A survey

Xiaoou Ding;Hongzhi Wang;Genglong Li;Haoxuan Li;Yingze Li;Yida Liu
{"title":"IoT data cleaning techniques: A survey","authors":"Xiaoou Ding;Hongzhi Wang;Genglong Li;Haoxuan Li;Yingze Li;Yida Liu","doi":"10.23919/ICN.2022.0026","DOIUrl":null,"url":null,"abstract":"Data cleaning is considered as an effective approach of improving data quality in order to help practitioners and researchers be devoted to downstream analysis and decision-making without worrying about data trustworthiness. This paper provides a systematic summary of the two main stages of data cleaning for Internet of Things (IoT) data with time series characteristics, including error data detection and data repairing. In respect to error data detection techniques, it categorizes an overview of quantitative data error detection methods for detecting single-point errors, continuous errors, and multidimensional time series data errors and qualitative data error detection methods for detecting rule-violating errors. Besides, it provides a detailed description of error data repairing techniques, involving statistics-based repairing, rule-based repairing, and human-involved repairing. We review the strengths and the limitations of the current data cleaning techniques under IoT data applications and conclude with an outlook on the future of IoT data cleaning.","PeriodicalId":100681,"journal":{"name":"Intelligent and Converged Networks","volume":"3 4","pages":"325-339"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9195266/10026509/10026521.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent and Converged Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10026521/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data cleaning is considered as an effective approach of improving data quality in order to help practitioners and researchers be devoted to downstream analysis and decision-making without worrying about data trustworthiness. This paper provides a systematic summary of the two main stages of data cleaning for Internet of Things (IoT) data with time series characteristics, including error data detection and data repairing. In respect to error data detection techniques, it categorizes an overview of quantitative data error detection methods for detecting single-point errors, continuous errors, and multidimensional time series data errors and qualitative data error detection methods for detecting rule-violating errors. Besides, it provides a detailed description of error data repairing techniques, involving statistics-based repairing, rule-based repairing, and human-involved repairing. We review the strengths and the limitations of the current data cleaning techniques under IoT data applications and conclude with an outlook on the future of IoT data cleaning.
物联网数据清理技术:调查
数据清洗被认为是提高数据质量的有效方法,可以帮助从业者和研究人员致力于下游分析和决策,而不必担心数据的可信度。本文系统总结了具有时间序列特征的物联网(IoT)数据清洗的两个主要阶段,包括错误数据检测和数据修复。在错误数据检测技术方面,对检测单点错误、连续错误和多维时间序列数据错误的定量数据错误检测方法和检测违规错误的定性数据错误检测方法进行了分类概述。此外,还详细描述了错误数据修复技术,包括基于统计的修复、基于规则的修复和人工修复。我们回顾了当前数据清洗技术在物联网数据应用中的优势和局限性,并对物联网数据清洗的未来进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信