Criteria for univalency and quasiconformal extension for harmonic mappings

IF 0.4 4区 数学 Q4 MATHEMATICS
Zhenyong Hu, Jinhua Fan
{"title":"Criteria for univalency and quasiconformal extension for harmonic mappings","authors":"Zhenyong Hu, Jinhua Fan","doi":"10.2996/kmj44203","DOIUrl":null,"url":null,"abstract":"In this paper, we study the univalency and quasiconformal extension of sense-preserving harmonic mappings $f$ in the unit disk. For $f$, we introduce a quantity similar to Ahlfors's criteria and obtain a criterion of univalency and quasiconformal extension of $f$, which can be regarded as generalizations of the results obtained by Ahlfors [Sufficient conditions for quasiconformal extension, Ann. of Math. Stud. 79 (1974), 23-29], Hernandez and Martin [Quasiconformal extensions of harmonic mappings in the plane, Ann. Acad. Sci. Fenn. Math. 38 (2013), 617-630], and Chen and Que [Quasiconformal extension of harmonic mappings with a complex parameter, J. Aust. Math. Soc. 102 (2017), 307-315]. By Schwarzian derivatives of harmonic mappings, we also obtain a criterion for univalency and quasiconformal extension for harmonic Techmuller mappings.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj44203","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the univalency and quasiconformal extension of sense-preserving harmonic mappings $f$ in the unit disk. For $f$, we introduce a quantity similar to Ahlfors's criteria and obtain a criterion of univalency and quasiconformal extension of $f$, which can be regarded as generalizations of the results obtained by Ahlfors [Sufficient conditions for quasiconformal extension, Ann. of Math. Stud. 79 (1974), 23-29], Hernandez and Martin [Quasiconformal extensions of harmonic mappings in the plane, Ann. Acad. Sci. Fenn. Math. 38 (2013), 617-630], and Chen and Que [Quasiconformal extension of harmonic mappings with a complex parameter, J. Aust. Math. Soc. 102 (2017), 307-315]. By Schwarzian derivatives of harmonic mappings, we also obtain a criterion for univalency and quasiconformal extension for harmonic Techmuller mappings.
调和映射的单叶性和拟共形扩张准则
本文研究了单位圆盘上保感调和映射$f$的单叶性和拟共形扩张。对于$f$,我们引入了一个类似于Ahlfors准则的量,并得到了$f$的单叶性和拟共形扩张的一个准则,这可以看作是Ahlfors[拟共形扩展的充分条件,Ann.of Math.Stul.79(1974),23-29],Hernandez和Martin[平面上调和映射的拟共形推广,Ann。Acad。科学。芬恩。数学38(2013),617-630],以及Chen和Que[具有复参数的调和映射的拟共形扩展,J.Aust.Math.Soc.102(2017),307-315]。利用调和映射的Schwarzian导数,我们还得到了调和Techmuller映射的单叶性和拟共形扩张的一个判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信