Boundary regularity of Bergman kernel in Hölder space

IF 0.7 3区 数学 Q2 MATHEMATICS
Ziming Shi
{"title":"Boundary regularity of Bergman kernel in\nHölder space","authors":"Ziming Shi","doi":"10.2140/pjm.2023.324.157","DOIUrl":null,"url":null,"abstract":"Let $D$ be a bounded strictly pseudoconvex domain in $\\mathbb{C}^n$. Assuming $bD \\in C^{k+3+\\alpha}$ where $k$ is a non-negative integer and $0<\\alpha \\leq 1$, we show that 1) the Bergman kernel $B(\\cdot, w_0) \\in C^{k+ \\min\\{\\alpha, \\frac12 \\} } (\\overline D)$, for any $w_0 \\in D$; 2) The Bergman projection on $D$ is a bounded operator from $C^{k+\\beta}(\\overline D)$ to $C^{k + \\min \\{ \\alpha, \\frac{\\beta}{2} \\}}(\\overline D) $ for any $0<\\beta \\leq 1$. Our results both improve and generalize the work of E. Ligocka.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.157","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $D$ be a bounded strictly pseudoconvex domain in $\mathbb{C}^n$. Assuming $bD \in C^{k+3+\alpha}$ where $k$ is a non-negative integer and $0<\alpha \leq 1$, we show that 1) the Bergman kernel $B(\cdot, w_0) \in C^{k+ \min\{\alpha, \frac12 \} } (\overline D)$, for any $w_0 \in D$; 2) The Bergman projection on $D$ is a bounded operator from $C^{k+\beta}(\overline D)$ to $C^{k + \min \{ \alpha, \frac{\beta}{2} \}}(\overline D) $ for any $0<\beta \leq 1$. Our results both improve and generalize the work of E. Ligocka.
Bergman核inHölder空间的边界正则性
设$D$是$\mathbb{C}^n$中的一个有界严格伪凸域。假设$bD \in C^{k+3+\alpha}$,其中$k$是一个非负整数和$0<\alpha \leq 1$,我们表明1)Bergman核$B(\cdot, w_0) \in C^{k+ \min\{\alpha, \frac12 \} } (\overline D)$,对于任何$w_0 \in D$;2)对于任意$0<\beta \leq 1$, $D$上的Bergman投影是从$C^{k+\beta}(\overline D)$到$C^{k + \min \{ \alpha, \frac{\beta}{2} \}}(\overline D) $的有界算子。我们的结果改进和推广了E. Ligocka的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信