Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems

Pub Date : 2023-09-05 DOI:10.58997/ejde.2023.56
Yuxin Li, Xiaojun Chang, Zhaosheng Feng
{"title":"Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems","authors":"Yuxin Li, Xiaojun Chang, Zhaosheng Feng","doi":"10.58997/ejde.2023.56","DOIUrl":null,"url":null,"abstract":"We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\\displaylines{ -\\Delta u+\\phi u=\\lambda u+\\mu|u|^{p-2}u+|u|^4u\\quad \\text{in }\\mathbb{R}^3,\\cr -\\Delta\\phi+\\Delta^2\\phi=4\\pi u^2\\quad \\text{in } \\mathbb{R}^3, }$$ under the mass constraint \\(\\int_{\\mathbb{R}^3}u^2\\,dx=c \\) for some prescribed \\(c>0\\), where \\(20\\) is a parameter, and \\(\\lambda\\in\\mathbb{R}\\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.\nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\displaylines{ -\Delta u+\phi u=\lambda u+\mu|u|^{p-2}u+|u|^4u\quad \text{in }\mathbb{R}^3,\cr -\Delta\phi+\Delta^2\phi=4\pi u^2\quad \text{in } \mathbb{R}^3, }$$ under the mass constraint \(\int_{\mathbb{R}^3}u^2\,dx=c \) for some prescribed \(c>0\), where \(20\) is a parameter, and \(\lambda\in\mathbb{R}\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions. For more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html
分享
查看原文
Sobolev临界薛定谔-波普-波多尔斯基系统的归一化解
我们研究了Sobolev临界Schrodinger-Bopp-Podolsky系统$$\displaylines|^{p-2}u+|u|^4u\quad\text{in}\mathbb{R}^3,\cr-\Delta\phi+\Delta^2,phi=4\pi u^2\quad\text{in}\mathbb{R}^ 3,}$$在质量约束下\(\int_{\mathbb{R}^3}u^2\,dx=c\),对于一些规定的\(c>0\),其中\(20\)是一个参数,\(\lambda\in\mathbb}R)是拉格朗日乘子。通过发展约束最小化方法,我们证明了上述系统允许一个局部极小值。此外,我们还建立了归一化基态解的存在性。有关详细信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信