{"title":"Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems","authors":"Yuxin Li, Xiaojun Chang, Zhaosheng Feng","doi":"10.58997/ejde.2023.56","DOIUrl":null,"url":null,"abstract":"We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\\displaylines{ -\\Delta u+\\phi u=\\lambda u+\\mu|u|^{p-2}u+|u|^4u\\quad \\text{in }\\mathbb{R}^3,\\cr -\\Delta\\phi+\\Delta^2\\phi=4\\pi u^2\\quad \\text{in } \\mathbb{R}^3, }$$ under the mass constraint \\(\\int_{\\mathbb{R}^3}u^2\\,dx=c \\) for some prescribed \\(c>0\\), where \\(20\\) is a parameter, and \\(\\lambda\\in\\mathbb{R}\\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.\nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\displaylines{ -\Delta u+\phi u=\lambda u+\mu|u|^{p-2}u+|u|^4u\quad \text{in }\mathbb{R}^3,\cr -\Delta\phi+\Delta^2\phi=4\pi u^2\quad \text{in } \mathbb{R}^3, }$$ under the mass constraint \(\int_{\mathbb{R}^3}u^2\,dx=c \) for some prescribed \(c>0\), where \(20\) is a parameter, and \(\lambda\in\mathbb{R}\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.
For more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html