{"title":"People counter on CCTV video using histogram of oriented gradient and Kalman filter methods","authors":"F. Adhinata, M. Ikhsan, W. Wahyono","doi":"10.14710/jtsiskom.2020.13660","DOIUrl":null,"url":null,"abstract":"CCTV cameras have an important function in the field of public service, especially for convenience. The objects recorded through CCTV cameras are processed into information to support service satisfaction in the community. This study uses the function of CCTV for people counting from objects recorded by a camera. Currently, the process of detecting and tracking people takes a long time to detect all frames. In this study, the frame selection into keyframes uses the mutual information entropy method. The keyframes processing uses the Histogram of Oriented Gradient (HOG) and Kalman filter methods. The proposed method results F1 value of 0.85, recall of 76 %, and precision of 97 % with winStride parameter (12,12), scale 1.05, and the distance of the human object to CCTV 4 meters.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"8 1","pages":"222-227"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2020.13660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
CCTV cameras have an important function in the field of public service, especially for convenience. The objects recorded through CCTV cameras are processed into information to support service satisfaction in the community. This study uses the function of CCTV for people counting from objects recorded by a camera. Currently, the process of detecting and tracking people takes a long time to detect all frames. In this study, the frame selection into keyframes uses the mutual information entropy method. The keyframes processing uses the Histogram of Oriented Gradient (HOG) and Kalman filter methods. The proposed method results F1 value of 0.85, recall of 76 %, and precision of 97 % with winStride parameter (12,12), scale 1.05, and the distance of the human object to CCTV 4 meters.