Sobolev regularity of the Bergman projection on certain pseudoconvex domains

IF 0.3 Q4 MATHEMATICS
Sayed Saber
{"title":"Sobolev regularity of the Bergman projection on certain pseudoconvex domains","authors":"Sayed Saber","doi":"10.1016/j.trmi.2016.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the Sobolev regularity of the Bergman projection <span><math><mi>B</mi></math></span> and the <span><math><mover><mrow><mi>∂</mi></mrow><mo>¯</mo></mover></math></span>-Neumann operator <span><math><mi>N</mi></math></span> on a certain pseudoconvex domain. We show that if <span><math><mi>Ω</mi></math></span> is a domain with Lipschitz boundary, which is relatively compact in an <span><math><mi>n</mi></math></span>-dimensional compact Kähler manifold and satisfies some “<span><math><mo>log</mo><mspace></mspace><mi>δ</mi></math></span>-pseudoconvexity” condition, the operators <span><math><mi>B</mi></math></span>, <span><math><mi>N</mi></math></span> and <span><math><msup><mrow><mover><mrow><mi>∂</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>∗</mo></mrow></msup><mi>N</mi></math></span> are regular in the Sobolev spaces <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></math></span> for forms with values in a holomorphic vector bundle <span><math><mi>E</mi></math></span> and for any <span><math><mi>k</mi><mo>&lt;</mo><mi>η</mi><mo>/</mo><mn>2</mn></math></span>, <span><math><mn>0</mn><mo>&lt;</mo><mi>η</mi><mo>&lt;</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 1","pages":"Pages 90-102"},"PeriodicalIF":0.3000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2016.10.004","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216300071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study the Sobolev regularity of the Bergman projection B and the ¯-Neumann operator N on a certain pseudoconvex domain. We show that if Ω is a domain with Lipschitz boundary, which is relatively compact in an n-dimensional compact Kähler manifold and satisfies some “logδ-pseudoconvexity” condition, the operators B, N and ¯N are regular in the Sobolev spaces Wr,sk(Ω,E) for forms with values in a holomorphic vector bundle E and for any k<η/2, 0<η<1, 0rn, 0sn1.

伪凸域上Bergman投影的Sobolev正则性
本文研究了某伪凸域上Bergman投影B和∂¯-Neumann算子N的Sobolev正则性。我们证明了如果Ω是一个具有Lipschitz边界的域,该域在N维紧致Kähler流形中是相对紧致的,并且满足某些“logδ-伪凸性”条件,那么对于值在全纯向量束E中的形式和对于任意k<η/2, 0<η< 1,0≤r≤N, 0≤s≤N - 1,算子B, N和∂¯∗N在Sobolev空间Wr,sk(Ω,E)中是正则的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信