Sandwich theorem for reciprocally strongly convex functions

Q4 Mathematics
M. Bracamonte, J. Gimenez, J. Medina
{"title":"Sandwich theorem for reciprocally strongly convex functions","authors":"M. Bracamonte, J. Gimenez, J. Medina","doi":"10.15446/RECOLMA.V52N2.77157","DOIUrl":null,"url":null,"abstract":"We introduce the notion of reciprocally strongly convex functions and we present some examples and properties of them. We also prove that two real functions f and g, defined on a real interval [a, b], satisfy for all x, y ∈ [a, b] and t ∈ [0, 1] iff there exists a reciprocally strongly convex function h : [a, b] → R such that f (x) ≤ h(x) ≤ g(x) for all x ∈ [a, b]. Finally, we obtain an approximate convexity result for reciprocally strongly convex functions; namely we prove a stability result of Hyers-Ulam type for this class of functions.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RECOLMA.V52N2.77157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce the notion of reciprocally strongly convex functions and we present some examples and properties of them. We also prove that two real functions f and g, defined on a real interval [a, b], satisfy for all x, y ∈ [a, b] and t ∈ [0, 1] iff there exists a reciprocally strongly convex function h : [a, b] → R such that f (x) ≤ h(x) ≤ g(x) for all x ∈ [a, b]. Finally, we obtain an approximate convexity result for reciprocally strongly convex functions; namely we prove a stability result of Hyers-Ulam type for this class of functions.
互强凸函数的夹心定理
引入了互强凸函数的概念,给出了它们的一些例子和性质。我们还证明了定义在实区间[a, b]上的两个实数函数f和g,满足对所有x, y∈[a, b]和t∈[0,1],如果存在一个互强凸函数h: [a, b]→R使得对所有x∈[a, b], f (x)≤h(x)≤g(x)。最后,我们得到了互强凸函数的一个近似凸性结果;即证明了该类函数的Hyers-Ulam型的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信