Non-radial normalized solutions for a nonlinear Schrodinger equation

IF 0.8 4区 数学 Q2 MATHEMATICS
Zhicheng Tong, Jianqing Chen, Zhi-Qiang Wang
{"title":"Non-radial normalized solutions for a nonlinear Schrodinger equation","authors":"Zhicheng Tong, Jianqing Chen, Zhi-Qiang Wang","doi":"10.58997/ejde.2023.19","DOIUrl":null,"url":null,"abstract":"This article concerns the existence of multiple non-radial positive solutions of the L2-constrained problem $$\\displaylines{-\\Delta{u}-Q(\\varepsilon x)|u|^{p-2}u=\\lambda{u},\\quad \\text{in }\\mathbb{R}^N, \\\\ \\int_{\\mathbb{R}^N}|u|^2dx=1,}$$ where \\(Q(x)\\) is a radially symmetric function, ε>0 is a small parameter, \\(N\\geq 2\\), and \\(p \\in (2, 2+4/N)\\) is assumed to be mass sub-critical. We are interested in the symmetry breaking of the normalized solutions and we prove the existence of multiple non-radial positive solutions as local minimizers of the energy functional.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.19","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article concerns the existence of multiple non-radial positive solutions of the L2-constrained problem $$\displaylines{-\Delta{u}-Q(\varepsilon x)|u|^{p-2}u=\lambda{u},\quad \text{in }\mathbb{R}^N, \\ \int_{\mathbb{R}^N}|u|^2dx=1,}$$ where \(Q(x)\) is a radially symmetric function, ε>0 is a small parameter, \(N\geq 2\), and \(p \in (2, 2+4/N)\) is assumed to be mass sub-critical. We are interested in the symmetry breaking of the normalized solutions and we prove the existence of multiple non-radial positive solutions as local minimizers of the energy functional.
一类非线性薛定谔方程的非径向归一化解
本文讨论L2约束问题$$\displaylines{-\Delta的多个非径向正解的存在性{u}-Q(\varepsilon x)|u|^{p-2}u=\lambda{u},\quad\text{in}\mathbb{R}^N,\\int_{\mathbb{R}^ N}|u|^2dx=1,}$$其中\(Q(x)\)是径向对称函数,ε>0是一个小参数,\(N\geq2\),并且\(p\in(2,2+4/N)\)被假定为质量次临界。我们对归一化解的对称性破缺感兴趣,并证明了多个非径向正解作为能量泛函的局部极小值的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信