Real Functions, Covers and Bornologies

Q4 Mathematics
L. Bukovský
{"title":"Real Functions, Covers and Bornologies","authors":"L. Bukovský","doi":"10.2478/tmmp-2021-0014","DOIUrl":null,"url":null,"abstract":"Abstract The paper tries to survey the recent results about relationships between covering properties of a topological space X and the space USC(X) of upper semicontinuous functions on X with the topology of pointwise convergence. Dealing with properties of continuous functions C(X), we need shrinkable covers. The results are extended for A-measurable and upper A-semimeasurable functions where A is a family of subsets of X. Similar results for covers respecting a bornology and spaces USC(X) or C(X) endowed by a topology defined by using the bornology are presented. Some of them seem to be new.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"78 1","pages":"199 - 214"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The paper tries to survey the recent results about relationships between covering properties of a topological space X and the space USC(X) of upper semicontinuous functions on X with the topology of pointwise convergence. Dealing with properties of continuous functions C(X), we need shrinkable covers. The results are extended for A-measurable and upper A-semimeasurable functions where A is a family of subsets of X. Similar results for covers respecting a bornology and spaces USC(X) or C(X) endowed by a topology defined by using the bornology are presented. Some of them seem to be new.
真正的功能,覆盖和Bornologies
摘要本文试图考察拓扑空间X的覆盖性质与具有逐点收敛拓扑的X上半连续函数的空间USC(X)之间关系的最新结果。关于连续函数C(X)的性质,我们需要可收缩的覆盖层。对A-可测函数和上A-半可测函数的结果进行了推广,其中A是X的子集族。给出了关于出生论的覆盖和由使用出生论定义的拓扑所赋予的空间USC(X)或C(X)的类似结果。其中一些似乎是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信