Structures of sets of solutions to the Hartree-Fock equation

IF 0.4 4区 数学 Q4 MATHEMATICS
Sohei Ashida
{"title":"Structures of sets of solutions to the Hartree-Fock equation","authors":"Sohei Ashida","doi":"10.2748/tmj.20210922","DOIUrl":null,"url":null,"abstract":"The Hartree-Fock equation which is the Euler-Lagrange equation corresponding to the Hartree-Fock energy functional is used in many-electron problems. Since the Hartree-Fock equation is a system of nonlinear eigenvalue problems, the study of structures of sets of all solutions needs new methods different from that for the set of eigenfunctions of linear operators. In this paper we prove that the sets of all solutions to the Hartree-Fock equation associated with critical values of the Hartree-Fock energy functional less than the first energy threshold are unions of a finite number of compact connected real-analytic spaces. The result would also be a basis for the study of approximation methods to solve the equation.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20210922","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The Hartree-Fock equation which is the Euler-Lagrange equation corresponding to the Hartree-Fock energy functional is used in many-electron problems. Since the Hartree-Fock equation is a system of nonlinear eigenvalue problems, the study of structures of sets of all solutions needs new methods different from that for the set of eigenfunctions of linear operators. In this paper we prove that the sets of all solutions to the Hartree-Fock equation associated with critical values of the Hartree-Fock energy functional less than the first energy threshold are unions of a finite number of compact connected real-analytic spaces. The result would also be a basis for the study of approximation methods to solve the equation.
Hartree-Fock方程解集的结构
Hartree-Fock方程是与Hartree-Fock能量泛函相对应的欧拉-拉格朗日方程,用于许多电子问题。由于Hartree-Fock方程是一个非线性特征值问题系统,研究所有解的集的结构需要不同于研究线性算子的特征函数集的结构的新方法。本文证明了Hartree-Fock方程与小于第一能量阈值的Hartree-Fock能量泛函临界值相关的所有解的集合是有限个紧连通实解析空间的并。这一结果也将为求解该方程的近似方法的研究奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信