Determination of the fracture energy under mode I loading of a honeycomb/carbon-epoxy sandwich panel using the asymmetric double cantilever beam test

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL
M. D. de Moura, R. Moreira, R. Rocha, Cristiana FM Oliveira
{"title":"Determination of the fracture energy under mode I loading of a honeycomb/carbon-epoxy sandwich panel using the asymmetric double cantilever beam test","authors":"M. D. de Moura, R. Moreira, R. Rocha, Cristiana FM Oliveira","doi":"10.1177/10996362221114906","DOIUrl":null,"url":null,"abstract":"The asymmetric double cantilever beam (ADCB) test was used to measure the fracture energy of a honeycomb/carbon-epoxy sandwich panel under mode I loading. A data reduction scheme based on equivalent crack length theory was developed for this case. The experimental Resistance-curves were obtained using exclusively data ensuing from the load-displacement curves avoiding the usual and non-rigorous crack length monitoring during the test. Furthermore, a mode partitioning methodology lying on cohesive zone modelling was adopted, aiming to estimate the fracture energy under mode I loading from the total fracture energy under mixed-mode I+II ensuing from the ADCB test. Numerical simulations of the ADCB test considering cohesive zone modelling were performed for the sake of validation of the followed procedure.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221114906","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

The asymmetric double cantilever beam (ADCB) test was used to measure the fracture energy of a honeycomb/carbon-epoxy sandwich panel under mode I loading. A data reduction scheme based on equivalent crack length theory was developed for this case. The experimental Resistance-curves were obtained using exclusively data ensuing from the load-displacement curves avoiding the usual and non-rigorous crack length monitoring during the test. Furthermore, a mode partitioning methodology lying on cohesive zone modelling was adopted, aiming to estimate the fracture energy under mode I loading from the total fracture energy under mixed-mode I+II ensuing from the ADCB test. Numerical simulations of the ADCB test considering cohesive zone modelling were performed for the sake of validation of the followed procedure.
采用非对称双悬臂梁试验测定蜂窝/碳-环氧夹层板在I型载荷下的断裂能
采用非对称双悬臂梁(ADCB)试验测量了蜂窝/碳-环氧夹层板在I型载荷作用下的断裂能。针对这种情况,提出了基于等效裂纹长度理论的数据约简方案。试验阻力曲线完全由荷载-位移曲线得到,避免了试验中通常和非严格的裂缝长度监测。采用基于内聚区建模的模式划分方法,从ADCB试验得出的I+II混合模式下的总断裂能中估算I模式加载下的断裂能。为了验证下面的步骤,对考虑黏结区建模的ADCB试验进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信