{"title":"Detection of nearby UAVs using a multi-microphone array on board a UAV","authors":"A. Cabrera-Ponce, J. Martínez-Carranza, C. Rascón","doi":"10.1177/1756829320925748","DOIUrl":null,"url":null,"abstract":"In this work, we address the problem of UAV detection flying nearby another UAV. Usually, computer vision could be used to face this problem by placing cameras onboard the patrolling UAV. However, visual processing is prone to false positives, sensible to light conditions and potentially slow if the image resolution is high. Thus, we propose to carry out the detection by using an array of microphones mounted with a special array onboard the patrolling UAV. To achieve our goal, we convert audio signals into spectrograms and used them in combination with a CNN architecture that has been trained to learn when a UAV is flying nearby, and when it is not. Clearly, the first challenge is the presence of ego-noise derived from the patrolling UAV itself through its propellers and motor’s noise. Our proposed CNN is based on Google’s Inception v.3 network. The Inception model is trained with a dataset created by us, which includes examples of when an intruder UAV flies nearby and when it does not. We conducted experiments for off-line and on-line detection. For the latter, we manage to generate spectrograms from the audio stream and process it with the Nvidia Jetson TX2 mounted onboard the patrolling UAV.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829320925748","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829320925748","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
In this work, we address the problem of UAV detection flying nearby another UAV. Usually, computer vision could be used to face this problem by placing cameras onboard the patrolling UAV. However, visual processing is prone to false positives, sensible to light conditions and potentially slow if the image resolution is high. Thus, we propose to carry out the detection by using an array of microphones mounted with a special array onboard the patrolling UAV. To achieve our goal, we convert audio signals into spectrograms and used them in combination with a CNN architecture that has been trained to learn when a UAV is flying nearby, and when it is not. Clearly, the first challenge is the presence of ego-noise derived from the patrolling UAV itself through its propellers and motor’s noise. Our proposed CNN is based on Google’s Inception v.3 network. The Inception model is trained with a dataset created by us, which includes examples of when an intruder UAV flies nearby and when it does not. We conducted experiments for off-line and on-line detection. For the latter, we manage to generate spectrograms from the audio stream and process it with the Nvidia Jetson TX2 mounted onboard the patrolling UAV.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.