{"title":"Effective width estimation of flanged reinforced concrete shear walls","authors":"M. Tabiee, H. Abdoos, Alireza Khaloo, Sina Kavei","doi":"10.1002/tal.2057","DOIUrl":null,"url":null,"abstract":"The present study deals with introducing a novel approach toward estimating the effective width of flanged reinforced concrete shear walls (FRCSWs). Due to the paucity of studies in assessing the effective width of nonrectangular sections, this paper aims at proposing efficacious formulations for the effective width estimation of short, squat, and slender T‐ and U‐shaped reinforced concrete (RC) shear walls subjected to the simultaneous action of the axial and lateral loading. To this end, at first, FRCSWs are simulated in the flanged shear wall numerical laboratory (FlashLab) program, which utilizes the finite element Abaqus software to analyze the walls. Thereafter, employing the developed numerical models, an extensive parametric investigation is conducted for a wide range of the key parameters. General expressions have then been developed to estimate the effective width of flanged RC shear walls invoking the evolutionary polynomial regression (EPR) analysis in conjunction with the genetic algorithm (GA). To assess the capability of the established equations in predicting the effective width of flanged sections, R‐factors have been calculated for all the cases examined in this study, which ranged between 0.78 and 0.94. Furthermore, a comparison has been made among the results attained through the proposed methodology and those obtained using the conventional design codes. It was revealed that the relative error obtained employing the proposed formulations is less than that of the corresponding values of the design codes by approximately 30% on average. The superiority of the established framework stems from consideration of the following: (1) influential parameters, (2) effective width variations at different performance levels, (3) loading direction, and (4) type of the wall in the effective width calculation process.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2057","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study deals with introducing a novel approach toward estimating the effective width of flanged reinforced concrete shear walls (FRCSWs). Due to the paucity of studies in assessing the effective width of nonrectangular sections, this paper aims at proposing efficacious formulations for the effective width estimation of short, squat, and slender T‐ and U‐shaped reinforced concrete (RC) shear walls subjected to the simultaneous action of the axial and lateral loading. To this end, at first, FRCSWs are simulated in the flanged shear wall numerical laboratory (FlashLab) program, which utilizes the finite element Abaqus software to analyze the walls. Thereafter, employing the developed numerical models, an extensive parametric investigation is conducted for a wide range of the key parameters. General expressions have then been developed to estimate the effective width of flanged RC shear walls invoking the evolutionary polynomial regression (EPR) analysis in conjunction with the genetic algorithm (GA). To assess the capability of the established equations in predicting the effective width of flanged sections, R‐factors have been calculated for all the cases examined in this study, which ranged between 0.78 and 0.94. Furthermore, a comparison has been made among the results attained through the proposed methodology and those obtained using the conventional design codes. It was revealed that the relative error obtained employing the proposed formulations is less than that of the corresponding values of the design codes by approximately 30% on average. The superiority of the established framework stems from consideration of the following: (1) influential parameters, (2) effective width variations at different performance levels, (3) loading direction, and (4) type of the wall in the effective width calculation process.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.