{"title":"Intelligent framework for cannabis classification using visualization of gas chromatography/mass spectrometry data and transfer learning","authors":"Ting-Yu Huang, J. Yu","doi":"10.3389/frans.2023.1125049","DOIUrl":null,"url":null,"abstract":"Introduction: Gas chromatography combined with mass spectrometry (GC/MS) is popular analytical instrumentation for chemical separation and identification. A novel framework for chemical forensics based on the visualization of GC/MS data and transfer learning is proposed. Methods: To evaluate the framework, 228 GC/MS data collected from two standard cannabis varieties, i.e., hemp and marijuana, were utilized. By processing the raw GC/MS data, analytical features, including retention times, mass-to-charge ratios, intensities, and summed ion mass spectra, were successfully transformed into two types of image representations. The GC/MS data transformed images were fed into a pre-trained convolutional neural network (CNN) to develop intelligent classifiers for the sample classification tasks. The effectiveness of several hyper-parameters for improving classification performance was investigated during transfer learning. Results: The proposed analytical workflow could classify hemp and marijuana with 97% accuracy. Furthermore, the transfer-learning-based classifiers were established without requiring big data sets and peak alignment. Discussion: The potential application of the new artificial intelligence (AI)-powered framework for chemical forensics using GC/MS data has been demonstrated. This framework provides unique opportunities for classifying various types of physical evidence using chromatography and mass spectrometry signals.","PeriodicalId":73063,"journal":{"name":"Frontiers in analytical science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in analytical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frans.2023.1125049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Gas chromatography combined with mass spectrometry (GC/MS) is popular analytical instrumentation for chemical separation and identification. A novel framework for chemical forensics based on the visualization of GC/MS data and transfer learning is proposed. Methods: To evaluate the framework, 228 GC/MS data collected from two standard cannabis varieties, i.e., hemp and marijuana, were utilized. By processing the raw GC/MS data, analytical features, including retention times, mass-to-charge ratios, intensities, and summed ion mass spectra, were successfully transformed into two types of image representations. The GC/MS data transformed images were fed into a pre-trained convolutional neural network (CNN) to develop intelligent classifiers for the sample classification tasks. The effectiveness of several hyper-parameters for improving classification performance was investigated during transfer learning. Results: The proposed analytical workflow could classify hemp and marijuana with 97% accuracy. Furthermore, the transfer-learning-based classifiers were established without requiring big data sets and peak alignment. Discussion: The potential application of the new artificial intelligence (AI)-powered framework for chemical forensics using GC/MS data has been demonstrated. This framework provides unique opportunities for classifying various types of physical evidence using chromatography and mass spectrometry signals.