Multiple solutions for perturbed quasilinear elliptic problems

Pub Date : 2023-02-26 DOI:10.12775/tmna.2022.069
R. Bartolo, A. M. Candela, A. Salvatore
{"title":"Multiple solutions for perturbed quasilinear elliptic problems","authors":"R. Bartolo, A. M. Candela, A. Salvatore","doi":"10.12775/tmna.2022.069","DOIUrl":null,"url":null,"abstract":"We investigate the existence of multiple solutions\nfor the $(p,q)$-quasilinear elliptic problem\n\\[\n\\begin{cases}\n-\\Delta_p u -\\Delta_q u\\ =\\ g(x, u) + \\varepsilon\\ h(x,u)\n& \\mbox{in } \\Omega,\\\\\nu=0 & \\mbox{on } \\partial\\Omega,\\\\\n \\end{cases}\n\\]\nwhere $1< p< q< +\\infty$, $\\Omega$ is an open bounded domain of\n${\\mathbb R}^N$, the nonlinearity $g(x,u)$ behaves at infinity as $|u|^{q-1}$,\n$\\varepsilon\\in{\\mathbb R}$ and $h\\in C(\\overline\\Omega\\times{\\mathbb R},{\\mathbb R})$.\nIn spite of the possible lack of a variational structure of this problem,\nfrom suitable assumptions on $g(x,u)$ and\nappropriate procedures and estimates,\nthe existence of multiple solutions can be proved for small perturbations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the existence of multiple solutions for the $(p,q)$-quasilinear elliptic problem \[ \begin{cases} -\Delta_p u -\Delta_q u\ =\ g(x, u) + \varepsilon\ h(x,u) & \mbox{in } \Omega,\\ u=0 & \mbox{on } \partial\Omega,\\ \end{cases} \] where $1< p< q< +\infty$, $\Omega$ is an open bounded domain of ${\mathbb R}^N$, the nonlinearity $g(x,u)$ behaves at infinity as $|u|^{q-1}$, $\varepsilon\in{\mathbb R}$ and $h\in C(\overline\Omega\times{\mathbb R},{\mathbb R})$. In spite of the possible lack of a variational structure of this problem, from suitable assumptions on $g(x,u)$ and appropriate procedures and estimates, the existence of multiple solutions can be proved for small perturbations.
分享
查看原文
扰动拟线性椭圆型问题的多重解
我们研究了$(p,q)$拟线性椭圆问题的多重解的存在性{cases}-\Delta_p u-\Delta_q u \=\g(x,u)+\varepsilon\h(x,u)&\mbox{in}\Omega,\\u=0&\mbox{on}\partial \ Omega,\\\\end{cases}\]其中$1<p<q<+\infty$,$\Omega$是${\mathbb R}^N$的开有界域,非线性$g(x,u)$在无穷大时表现为$|u|^{q-1}$,{\mathbb R}$中的$\varepsilon\in和C中的$h\(\overline\Omega\times{\math BB R},{\mathibb R})$。尽管这个问题可能缺乏变分结构,但通过对$g(x,u)$的适当假设以及适当的程序和估计,可以证明小扰动下存在多个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信