On a Multifractal Pressure for Countable Markov Shifts

IF 0.4 Q4 MATHEMATICS
A. Mesón, F. Vericat
{"title":"On a Multifractal Pressure for Countable Markov Shifts","authors":"A. Mesón, F. Vericat","doi":"10.1080/1726037X.2019.1668150","DOIUrl":null,"url":null,"abstract":"Abstract In a recent article [J. d' Analyse Math 131, 207, 2017], Olsen intoduced a generalized notion of multifractal pressure, and also a multifractal dynamical zeta function, which essentilly consists in considering not all configurations, but those which are ”multifractally relevant”. In this way more precise information about the multifractal spectrum analyzed is encoded by the multifractal pressure and the multifratcal zeta function. He applied the theory for dynamical systems modelled by finite alphabet shifts, in particular for self conformal iterated systems. Here we continue with this line considering dynamical systems given by countable Markov shifts.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"17 1","pages":"267 - 295"},"PeriodicalIF":0.4000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2019.1668150","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2019.1668150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In a recent article [J. d' Analyse Math 131, 207, 2017], Olsen intoduced a generalized notion of multifractal pressure, and also a multifractal dynamical zeta function, which essentilly consists in considering not all configurations, but those which are ”multifractally relevant”. In this way more precise information about the multifractal spectrum analyzed is encoded by the multifractal pressure and the multifratcal zeta function. He applied the theory for dynamical systems modelled by finite alphabet shifts, in particular for self conformal iterated systems. Here we continue with this line considering dynamical systems given by countable Markov shifts.
关于可数Markov位移的多重分形压力
摘要在最近的一篇文章[J.d'Analyze Math 1312072017]中,Olsen引入了多重分形压力的广义概念,以及多重分形动态ζ函数,该函数本质上不包括所有配置,而是考虑那些“多重分形相关”的配置。以这种方式,关于所分析的多重分形谱的更精确的信息由多重分形压力和多重分形ζ函数编码。他将该理论应用于由有限字母移位建模的动力学系统,特别是自共形迭代系统。在这里,我们继续这条线,考虑由可数马尔可夫位移给出的动力系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信