Max Okraschevski, Léo C. C. Mesquita, Rainer Koch, Epaminondas Mastorakos, Hans-Jörg Bauer
{"title":"A Numerical Study of Aero Engine Sub-idle Operation: From a Realistic Representation of Spray Injection to Detailed Chemistry LES-CMC","authors":"Max Okraschevski, Léo C. C. Mesquita, Rainer Koch, Epaminondas Mastorakos, Hans-Jörg Bauer","doi":"10.1007/s10494-023-00443-0","DOIUrl":null,"url":null,"abstract":"<div><p>High altitude relight is a matter of increasing importance for aero engine manufacturers, in which combustion plays literally a vital role. In this paper we want to evaluate the predictive capability of a combined Smoothed Particle Hydrodynamics (SPH) and Large Eddy Simulation with Conditional Moment Closure (LES-CMC) approach for a spray combustion process at these extreme conditions. The focus is on the SPH modelling of the kerosene primary atomization, the extraction of realistic spray boundary conditions for LES-CMC and the effect of the spray on combustion. Interestingly, it will be demonstrated that the fragment size distributions resulting from the airblast atomization are characterized by bimodal behaviour during the relight process and that small and large fragments differ significantly in their dynamical behavior. This is shown to affect the combustion in the Central Recirculation Zone (CRZ). Very large fragments are even able to supersede the flame from the CRZ, such that endothermic pyrolysis becomes dominant, but simultaneously essential to sustain and stabilize the remaining flame with reactive pyrolysis species. The study proves the ability of our methodology for extreme operating conditions, in which experimental insights are hardly possible.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"111 2","pages":"493 - 530"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00443-0.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00443-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
High altitude relight is a matter of increasing importance for aero engine manufacturers, in which combustion plays literally a vital role. In this paper we want to evaluate the predictive capability of a combined Smoothed Particle Hydrodynamics (SPH) and Large Eddy Simulation with Conditional Moment Closure (LES-CMC) approach for a spray combustion process at these extreme conditions. The focus is on the SPH modelling of the kerosene primary atomization, the extraction of realistic spray boundary conditions for LES-CMC and the effect of the spray on combustion. Interestingly, it will be demonstrated that the fragment size distributions resulting from the airblast atomization are characterized by bimodal behaviour during the relight process and that small and large fragments differ significantly in their dynamical behavior. This is shown to affect the combustion in the Central Recirculation Zone (CRZ). Very large fragments are even able to supersede the flame from the CRZ, such that endothermic pyrolysis becomes dominant, but simultaneously essential to sustain and stabilize the remaining flame with reactive pyrolysis species. The study proves the ability of our methodology for extreme operating conditions, in which experimental insights are hardly possible.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.