Algorithms for Quadratic Forms over Global Function Fields

IF 0.4 Q4 MATHEMATICS, APPLIED
Mawunyo Kofi Darkey-Mensah
{"title":"Algorithms for Quadratic Forms over Global Function Fields","authors":"Mawunyo Kofi Darkey-Mensah","doi":"10.1145/3609983.3609985","DOIUrl":null,"url":null,"abstract":"This dissertation presents computational tools for quadratic forms over global function fields of characteristic different from 2. The majority of the algorithms we develop in this study rely on our ability to find all places dividing any coefficient of the given quadratic form. This problem is equivalent to the factorization of fractional ideals in the ring of polynomial functions of a global function field. As a result, we begin by presenting alternative approaches for factoring fractional ideals that do not rely on determining the maximum order of the global function field in question. We then propose techniques for tackling the following quadratic form theory computational problems: how to detect whether a quadratic form is isotropic or not, how to detect whether a quadratic form is hyperbolic or not, how to compute the anisotropic dimension (or equivalently the Witt index) of a quadratic form, how to construct an anisotropic part of a quadratic form, how to determine if two forms are Witt-similar or are Ono-similar or not. We further explore algorithms for computing some important field invariants that are linked to quadratic forms. Those are: the length of a sum of squares, the level of a field, the Pythagoras number of a field, as well as a Pythagoras element of a field.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"56 1","pages":"150 - 150"},"PeriodicalIF":0.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609983.3609985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This dissertation presents computational tools for quadratic forms over global function fields of characteristic different from 2. The majority of the algorithms we develop in this study rely on our ability to find all places dividing any coefficient of the given quadratic form. This problem is equivalent to the factorization of fractional ideals in the ring of polynomial functions of a global function field. As a result, we begin by presenting alternative approaches for factoring fractional ideals that do not rely on determining the maximum order of the global function field in question. We then propose techniques for tackling the following quadratic form theory computational problems: how to detect whether a quadratic form is isotropic or not, how to detect whether a quadratic form is hyperbolic or not, how to compute the anisotropic dimension (or equivalently the Witt index) of a quadratic form, how to construct an anisotropic part of a quadratic form, how to determine if two forms are Witt-similar or are Ono-similar or not. We further explore algorithms for computing some important field invariants that are linked to quadratic forms. Those are: the length of a sum of squares, the level of a field, the Pythagoras number of a field, as well as a Pythagoras element of a field.
全局函数域上二次型的算法
本文给出了特征不同于2的全局函数域上二次型的计算工具。我们在这项研究中开发的大多数算法都依赖于我们找到对给定二次型的任何系数进行除法的所有位置的能力。这个问题等价于全局函数域的多项式函数环中分数理想的因子分解。因此,我们首先提出了分解分数理想的替代方法,这些方法不依赖于确定所讨论的全局函数域的最大阶。然后,我们提出了解决以下二次型理论计算问题的技术:如何检测二次型是否各向同性,如何检测二次型是否为双曲型,如何计算二次型的各向异性维度(或等效的Witt指数),如何构造二次形的各向异性部分,如何确定两种形式是Witt相似还是Ono相似。我们进一步探索了计算一些与二次形式相关的重要域不变量的算法。它们是:平方和的长度,域的水平,域的毕达哥拉斯数,以及域的毕达哥拉斯元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信