Modular graph functions and asymptotic expansions of Poincaré series

IF 1.2 3区 数学 Q1 MATHEMATICS
Daniele Dorigoni, A. Kleinschmidt
{"title":"Modular graph functions and asymptotic expansions of Poincaré series","authors":"Daniele Dorigoni, A. Kleinschmidt","doi":"10.4310/cntp.2019.v13.n3.a3","DOIUrl":null,"url":null,"abstract":"In this note we study $SL(2,\\mathbb{Z})$-invariant functions such as modular graph functions or coefficient functions of higher derivative corrections in type IIB string theory. The functions solve inhomogeneous Laplace equations and we choose to represent them as Poincare series. In this way we can combine different methods for asymptotic expansions and obtain the perturbative and non-perturbative contributions to their zero Fourier modes. In the case of the higher derivative corrections, these terms have an interpretation in terms of perturbative string loop effects and pairs of instantons/anti-instantons.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2019.v13.n3.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 25

Abstract

In this note we study $SL(2,\mathbb{Z})$-invariant functions such as modular graph functions or coefficient functions of higher derivative corrections in type IIB string theory. The functions solve inhomogeneous Laplace equations and we choose to represent them as Poincare series. In this way we can combine different methods for asymptotic expansions and obtain the perturbative and non-perturbative contributions to their zero Fourier modes. In the case of the higher derivative corrections, these terms have an interpretation in terms of perturbative string loop effects and pairs of instantons/anti-instantons.
模图函数与Poincaré级数的渐近展开
在本文中,我们研究了IIB型弦论中的$SL(2,\mathbb{Z})$不变函数,如模图函数或高阶导数校正的系数函数。这些函数求解非齐次拉普拉斯方程,我们选择将它们表示为庞加莱级数。通过这种方式,我们可以将不同的渐近展开方法结合起来,获得微扰和非微扰对其零傅立叶模式的贡献。在高阶导数校正的情况下,这些术语可以根据扰动串循环效应和瞬变/反瞬变对进行解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信