Sol-gel Synthesis and Characterization of MgCO3 – Al2O3 Composite Solid Electrolytes

IF 0.7 4区 材料科学 Q4 ELECTROCHEMISTRY
M. Sulaiman, M. Kadir, A. N. Che Mat
{"title":"Sol-gel Synthesis and Characterization of MgCO3 – Al2O3 Composite Solid Electrolytes","authors":"M. Sulaiman, M. Kadir, A. N. Che Mat","doi":"10.14447/jnmes.v24i3.a05","DOIUrl":null,"url":null,"abstract":"Composite solid electrolytes in the system (1-x)MgCO3 – xAl2O3 with x = 0.1 - 0.9 were synthesized by a sol-gel method and analyzed by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy and alternating current impedance spectroscopy for the determination of the phases and crystallinity, thermal stability, surface morphology, elemental composition, chemical bonding and conductivity, respectively. The composites show that, the crystallinity of the composites decreases as the amount of Al2O3 increase which could lead to higher conductivity. The thermal decomposition studies also indicate that the melting and/or decomposition of the composites occur at lower temperature than the pure MgCO3 which normally take place at 350 oC. The composite with the ratio of x = 0.9 give the highest conductivity value in order of 10-4 S.cm-1 as compared to other ratio due to effective transfer of charge carriers in addition to the formation of MgO-Mg2+ species at the interface.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v24i3.a05","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite solid electrolytes in the system (1-x)MgCO3 – xAl2O3 with x = 0.1 - 0.9 were synthesized by a sol-gel method and analyzed by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy and alternating current impedance spectroscopy for the determination of the phases and crystallinity, thermal stability, surface morphology, elemental composition, chemical bonding and conductivity, respectively. The composites show that, the crystallinity of the composites decreases as the amount of Al2O3 increase which could lead to higher conductivity. The thermal decomposition studies also indicate that the melting and/or decomposition of the composites occur at lower temperature than the pure MgCO3 which normally take place at 350 oC. The composite with the ratio of x = 0.9 give the highest conductivity value in order of 10-4 S.cm-1 as compared to other ratio due to effective transfer of charge carriers in addition to the formation of MgO-Mg2+ species at the interface.
MgCO3 - Al2O3复合固体电解质的溶胶-凝胶合成及表征
采用溶胶-凝胶法制备了(1-x)MgCO3 - xAl2O3体系(x = 0.1 ~ 0.9)的复合固体电解质,并采用x射线衍射、差示扫描量热法、热重法、扫描电镜、能量色散x射线、傅里叶变换红外光谱和交流阻抗谱等方法对其进行了分析,测定了其物相和结晶度、热稳定性、表面形貌、元素组成、化学键和电导率。复合材料的结晶度随着Al2O3添加量的增加而降低,从而提高了复合材料的导电性。热分解研究还表明,复合材料的熔化和/或分解发生在较低的温度下,而纯MgCO3通常发生在350℃。当x = 0.9时,复合材料的电导率最高,为10-4 S.cm-1,这是由于载流子的有效转移以及MgO-Mg2+物质在界面处的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of New Materials For Electrochemical Systems
Journal of New Materials For Electrochemical Systems ELECTROCHEMISTRY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信