On a Weibull-Distributed Error Component of a Multiplicative Error Model Under Inverse Square Root Transformation

C. U. Onyemachi, S. Onyeagu, Samuel Ademola Phillips, Jamiu Adebowale Oke, Callistus Ezekwe Ugwo
{"title":"On a Weibull-Distributed Error Component of a Multiplicative Error Model Under Inverse Square Root Transformation","authors":"C. U. Onyemachi, S. Onyeagu, Samuel Ademola Phillips, Jamiu Adebowale Oke, Callistus Ezekwe Ugwo","doi":"10.11648/J.IJDSA.20210704.12","DOIUrl":null,"url":null,"abstract":"We first consider the Multiplicative Error Model (MEM) introduced in financial econometrics by Engle (2002) as a general class of time series model for positive-valued random variables, which are decomposed into the product of their conditional mean and a positive-valued error term. Considering the possibility that the error component of a MEM can be a Weibull distribution and the need for data transformation as a popular remedial measure to stabilize the variance of a data set prior to statistical modeling, this paper investigates the impact of the inverse square root transformation (ISRT) on the mean and variance of a Weibull-distributed error component of a MEM. The mean and variance of the Weibull distribution and those of the inverse square root transformed distribution are calculated for σ=6, 7,.., 99, 100 with the corresponding values of n for which the mean of the untransformed distribution is equal to one. The paper concludes that the inverse square root would yield better results when using MEM with a Weibull-distributed error component and where data transformation is deemed necessary to stabilize the variance of the data set.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"7 1","pages":"109"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJDSA.20210704.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We first consider the Multiplicative Error Model (MEM) introduced in financial econometrics by Engle (2002) as a general class of time series model for positive-valued random variables, which are decomposed into the product of their conditional mean and a positive-valued error term. Considering the possibility that the error component of a MEM can be a Weibull distribution and the need for data transformation as a popular remedial measure to stabilize the variance of a data set prior to statistical modeling, this paper investigates the impact of the inverse square root transformation (ISRT) on the mean and variance of a Weibull-distributed error component of a MEM. The mean and variance of the Weibull distribution and those of the inverse square root transformed distribution are calculated for σ=6, 7,.., 99, 100 with the corresponding values of n for which the mean of the untransformed distribution is equal to one. The paper concludes that the inverse square root would yield better results when using MEM with a Weibull-distributed error component and where data transformation is deemed necessary to stabilize the variance of the data set.
方根反变换下乘法误差模型的威布尔分布误差分量
我们首先考虑Engle(2002)在金融计量经济学中引入的乘法误差模型(MEM),将其作为正值随机变量的一般时间序列模型,将其分解为条件均值与正值误差项的乘积。考虑到MEM的误差分量可能是威布尔分布,以及在统计建模之前需要进行数据变换作为一种常用的补救措施来稳定数据集的方差,本文研究了平方根反变换(ISRT)对MEM威布尔分布误差分量的均值和方差的影响。在σ=6, 7,…时,计算了威布尔分布的均值和方差以及根号反变换分布的均值和方差。, 99, 100,其对应的n值为未变换分布的均值等于1。本文的结论是,当使用带有威布尔分布误差分量的MEM,并且认为需要进行数据转换以稳定数据集的方差时,平方根反比会产生更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信