{"title":"Flashover and Back-Flashover Analysis with Lightning Strokes of 69 kV and 24 kV Lines in Thailand Using ATP/EMTP","authors":"H. Swalehe, V. Pius, B. Marungsri","doi":"10.15866/IRECON.V6I4.15253","DOIUrl":null,"url":null,"abstract":"Lightning is the principal source of disturbance in power system leading towards outages and damage of expensive equipment in the electrical power network. Induction of disastrous voltages across string insulators from the lightning that causes flashovers and back flashovers have been the major study in recent researches. Efficient parameterization of lightning and it is associated with behavior provides a significant knowledge towards successful operation of the electrical network. Therefore, this work studies the effects of flashover and back flashover affected by negative lightning (single and double) strokes in the operation of 69 kV sub-transmission line and 24kV distribution line of Metropolitan Electricity Authority, Thailand. Seven poles spanning 24 km were considered in this study. Lightning was initiated at the vertex of the fourth pole and mid-span of the third and fourth pole, and investigations were carried out by lightning magnitude and multiplicity when it hits an overhead ground wire (OHGW) and phase A of the 69 kV line by using ATPDraw. Results showed that negative lightning stroke of -34 kA and above could induce disastrous voltages across string insulators that leads to back flashover and flashover when hits at the top and mid-span of OHGW and phase conductor respectively. Power failure in 69 kV may cause double failure to the network since it is the main power source of 24 kV line. Consequently, a double failure may direct towards reduced reliability and extra maintenance cost of catastrophically damaged line insulators. Therefore, the concept of flashover and back-flashover can help to improve the lightning performance of MEA power lines.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IRECON.V6I4.15253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
Lightning is the principal source of disturbance in power system leading towards outages and damage of expensive equipment in the electrical power network. Induction of disastrous voltages across string insulators from the lightning that causes flashovers and back flashovers have been the major study in recent researches. Efficient parameterization of lightning and it is associated with behavior provides a significant knowledge towards successful operation of the electrical network. Therefore, this work studies the effects of flashover and back flashover affected by negative lightning (single and double) strokes in the operation of 69 kV sub-transmission line and 24kV distribution line of Metropolitan Electricity Authority, Thailand. Seven poles spanning 24 km were considered in this study. Lightning was initiated at the vertex of the fourth pole and mid-span of the third and fourth pole, and investigations were carried out by lightning magnitude and multiplicity when it hits an overhead ground wire (OHGW) and phase A of the 69 kV line by using ATPDraw. Results showed that negative lightning stroke of -34 kA and above could induce disastrous voltages across string insulators that leads to back flashover and flashover when hits at the top and mid-span of OHGW and phase conductor respectively. Power failure in 69 kV may cause double failure to the network since it is the main power source of 24 kV line. Consequently, a double failure may direct towards reduced reliability and extra maintenance cost of catastrophically damaged line insulators. Therefore, the concept of flashover and back-flashover can help to improve the lightning performance of MEA power lines.
期刊介绍:
The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.