{"title":"A mindlin shell finite element for stone masonry bridges with backfill","authors":"P. Řeřicha","doi":"10.14311/ap.2022.62.0293","DOIUrl":null,"url":null,"abstract":"Stone masonry bridges are difficult to analyse with commercial finite element (FE) packages for their specific heterogeneous composition. The stone arch is best modelled as a thick shell where there are predestined directions of tension failure, normal to the bed joints. A dedicated, very simple, Mindlin shell finite element is developed with five translational degrees of freedom per node. It features compatibility with linear isoparametric or constant strain elements for the backfill. Most bridges can be analysed with a sufficient accuracy assuming plain strain conditions. The element then simplifies to a Timoshenko beam element with three translational degrees of freedom per node. An application of the latter one to the bridge at Poniklá is presented.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2022.62.0293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stone masonry bridges are difficult to analyse with commercial finite element (FE) packages for their specific heterogeneous composition. The stone arch is best modelled as a thick shell where there are predestined directions of tension failure, normal to the bed joints. A dedicated, very simple, Mindlin shell finite element is developed with five translational degrees of freedom per node. It features compatibility with linear isoparametric or constant strain elements for the backfill. Most bridges can be analysed with a sufficient accuracy assuming plain strain conditions. The element then simplifies to a Timoshenko beam element with three translational degrees of freedom per node. An application of the latter one to the bridge at Poniklá is presented.
期刊介绍:
Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.