Photophysical property and optical nonlinearity of cyclo[18]carbon (C18) precursors, C18-(CO)n (n = 2, 4, and 6): Focusing on the effect of carbonyl (-CO) groups

Xia Wang, Zeyu Liu, Xiufen Yan, T. Lu, Haowei Wang, Weiwei Xiong
{"title":"Photophysical property and optical nonlinearity of cyclo[18]carbon (C18) precursors, C18-(CO)n (n = 2, 4, and 6): Focusing on the effect of carbonyl (-CO) groups","authors":"Xia Wang, Zeyu Liu, Xiufen Yan, T. Lu, Haowei Wang, Weiwei Xiong","doi":"10.33774/chemrxiv-2021-mkfdj","DOIUrl":null,"url":null,"abstract":"Considering their remarkable chemical stability, the precursors of cyclo[18]carbon (C18), C18-(CO)n (n = 2, 4, and 6), have more practical significance than the elusive C18 ring. In the present paper, the electronic spectrum and (hyper)polarizability of the C18-(CO)n (n = 2, 4, and 6) are studied by theoretical calculations and analyses for revealing the utility of introduction of carbonyl (-CO) groups on molecular optical properties. The analysis results show that the successive introduction of -CO groups leads to red-shift of the absorption spectrum, but maximum absorption of all molecules is mainly due to the charge redistribution caused by electron transition within C18 ring. Except for the vanishing first hyperpolarizability of C18-(CO)6 results from its octupolar character, the (hyper)polarizabilities of the precursors present an ascending trend with the increase of -CO groups in the molecule, and the higher-order response properties are more sensitive to the number of -CO groups. By means of (hyper)polarizability density analysis and (hyper)polarizability contribution decomposition, the fundamental reasons for the difference of (hyper)polarizability of different molecules were systematically discussed from the perspectives of physical and structural origins, respectively. As to the frequency dispersions under the incident light, the significant optical resonances were found on the hyperpolarizability of molecules C18-(CO)n (n = 2, 4, and 6), which contrast with the fact that it has inconspicuous influences on molecular polarizability.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-mkfdj","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Considering their remarkable chemical stability, the precursors of cyclo[18]carbon (C18), C18-(CO)n (n = 2, 4, and 6), have more practical significance than the elusive C18 ring. In the present paper, the electronic spectrum and (hyper)polarizability of the C18-(CO)n (n = 2, 4, and 6) are studied by theoretical calculations and analyses for revealing the utility of introduction of carbonyl (-CO) groups on molecular optical properties. The analysis results show that the successive introduction of -CO groups leads to red-shift of the absorption spectrum, but maximum absorption of all molecules is mainly due to the charge redistribution caused by electron transition within C18 ring. Except for the vanishing first hyperpolarizability of C18-(CO)6 results from its octupolar character, the (hyper)polarizabilities of the precursors present an ascending trend with the increase of -CO groups in the molecule, and the higher-order response properties are more sensitive to the number of -CO groups. By means of (hyper)polarizability density analysis and (hyper)polarizability contribution decomposition, the fundamental reasons for the difference of (hyper)polarizability of different molecules were systematically discussed from the perspectives of physical and structural origins, respectively. As to the frequency dispersions under the incident light, the significant optical resonances were found on the hyperpolarizability of molecules C18-(CO)n (n = 2, 4, and 6), which contrast with the fact that it has inconspicuous influences on molecular polarizability.
环[18]碳(C18)前体C18-(CO)n(n=2、4和6)的光物理性质和光学非线性:关注羰基(-CO)的影响
考虑到其显著的化学稳定性,环[18]碳(C18)、C18-(CO)n(n=2、4和6)的前体比难以捉摸的C18环更有实际意义。本文通过理论计算和分析研究了C18-(CO)n(n=2,4和6)的电子光谱和(超)极化率,以揭示羰基(-CO)的引入对分子光学性质的影响。分析结果表明,-CO基团的相继引入导致了吸收光谱的红移,但所有分子的最大吸收主要是由于C18环内电子跃迁引起的电荷再分配。除了C18-(CO)6的第一超极化率由于其八极性而消失外,前体的(超)极化率随着分子中-CO基团的增加呈上升趋势,并且高阶响应性质对-CO基团数量更敏感。通过(超)极化率密度分析和(超)偏振率贡献分解,分别从物理和结构起源的角度系统地讨论了不同分子(超)极性差异的根本原因。关于入射光下的频率色散,在分子C18-(CO)n(n=2、4和6)的超极化率上发现了显著的光学共振,这与它对分子极化率的影响不明显形成了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信