Exponential Fitted Operator Method for Singularly Perturbed Convection-Diffusion Type Problems with Nonlocal Boundary Condition

Q3 Mathematics
H. Debela
{"title":"Exponential Fitted Operator Method for Singularly Perturbed Convection-Diffusion Type Problems with Nonlocal Boundary Condition","authors":"H. Debela","doi":"10.1155/2021/5559486","DOIUrl":null,"url":null,"abstract":"This paper presents the study of singularly perturbed differential equations of convection-diffusion type with nonlocal boundary condition. The proposed numerical scheme is a combination of the classical finite difference method for the boundary conditions and exponential fitted operator method for the differential equations at the interior points. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical examples considered. The method is shown to be first-order accuracy independent of the perturbation parameter \n \n ε\n \n .","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5559486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the study of singularly perturbed differential equations of convection-diffusion type with nonlocal boundary condition. The proposed numerical scheme is a combination of the classical finite difference method for the boundary conditions and exponential fitted operator method for the differential equations at the interior points. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical examples considered. The method is shown to be first-order accuracy independent of the perturbation parameter ε .
具有非局部边界条件的奇摄动对流扩散型问题的指数拟合算子法
本文研究了具有非局部边界条件的对流扩散型奇摄动微分方程。所提出的数值格式是边界条件的经典有限差分法和内部点微分方程的指数拟合算子法的结合。对于所考虑的数值算例,给出了不同扰动参数值和网格尺寸下的最大绝对误差和收敛速度表。该方法具有一阶精度,与扰动参数ε无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信