T. M. Abuhay, S. Robinson, A. Mamuye, S. Kovalchuk
{"title":"Machine learning integrated patient flow simulation: why and how?","authors":"T. M. Abuhay, S. Robinson, A. Mamuye, S. Kovalchuk","doi":"10.1080/17477778.2023.2217334","DOIUrl":null,"url":null,"abstract":"ABSTRACT Stochastic distribution methods were used to construct patient flow simulation sub-models such as patient inflow, length of stay (LoS), cost of treatment (CoT) and clinical pathways (CPs). However, the patient inflow rate demonstrates seasonality, trend, and variation due to natural and human-made factors. LoS, CoT and CPs are determined by social-demographics factors, clinical and laboratory test results, resource availability and healthcare structure. For this reason, patient flow simulation models developed using stochastic methods have limitations including uncertainty, not recognising patient heterogeneity, and not representing personalised and value-based healthcare. This, in turn, results in a low acceptance level and implementation of solutions suggested by patient flow simulation models. On the other hand, machine learning becomes effective in predicting patient inflow, LoS, CoT, and CPs. This paper, therefore, describes why coupling machine learning with patient flow simulation is important, proposes a conceptual architecture for machine learning integrated patient flow simulation and demonstrates its implementation with examples.","PeriodicalId":51296,"journal":{"name":"Journal of Simulation","volume":"17 1","pages":"580 - 593"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17477778.2023.2217334","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Stochastic distribution methods were used to construct patient flow simulation sub-models such as patient inflow, length of stay (LoS), cost of treatment (CoT) and clinical pathways (CPs). However, the patient inflow rate demonstrates seasonality, trend, and variation due to natural and human-made factors. LoS, CoT and CPs are determined by social-demographics factors, clinical and laboratory test results, resource availability and healthcare structure. For this reason, patient flow simulation models developed using stochastic methods have limitations including uncertainty, not recognising patient heterogeneity, and not representing personalised and value-based healthcare. This, in turn, results in a low acceptance level and implementation of solutions suggested by patient flow simulation models. On the other hand, machine learning becomes effective in predicting patient inflow, LoS, CoT, and CPs. This paper, therefore, describes why coupling machine learning with patient flow simulation is important, proposes a conceptual architecture for machine learning integrated patient flow simulation and demonstrates its implementation with examples.
Journal of SimulationCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
5.70
自引率
16.00%
发文量
42
期刊介绍:
Journal of Simulation (JOS) aims to publish both articles and technical notes from researchers and practitioners active in the field of simulation. In JOS, the field of simulation includes the techniques, tools, methods and technologies of the application and the use of discrete-event simulation, agent-based modelling and system dynamics.