{"title":"Optimally designed tunable phase change material-based narrowband perfect absorber","authors":"D. Tripathi, R. Hegde","doi":"10.1117/1.JNP.17.016004","DOIUrl":null,"url":null,"abstract":"Abstract. In recent years, there has been a growing interest in active metasurfaces. In particular, phase change material-based metasurfaces offering all-optical reconfigurability are being explored. Despite recent progress, further improvement in device reconfiguration energies and optical contrast achievable between the amorphous and crystalline states is desirable. In this work, we demonstrate that using a mirror-backed chalcogenide-based narrowband perfect absorber metasurface can significantly improve the device’s reflection contrast at much lower energies than its mirrorless case. By considering a GST225 metasurface operating in the near IR, our systematic numerical study finds improved reflection contrast (up to −32 dB, Q-factor 19.22 compared with 9.59 dB, Q-factor 11 for the mirrorless case). For the mirrored case, the thermal study finds faster crystallization (up to 6 times) at reduced reconfiguration thresholds (72 times lower) compared with the mirrorless case. This results in a more than 2 orders of magnitude higher device figure of merit [defined as the change in reflection contrast (in dB) to a corresponding change in optical energy (in nJ)] compared with the mirrorless case. The results are promising for high-performance metasurfaces at reduced switching energies.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.016004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. In recent years, there has been a growing interest in active metasurfaces. In particular, phase change material-based metasurfaces offering all-optical reconfigurability are being explored. Despite recent progress, further improvement in device reconfiguration energies and optical contrast achievable between the amorphous and crystalline states is desirable. In this work, we demonstrate that using a mirror-backed chalcogenide-based narrowband perfect absorber metasurface can significantly improve the device’s reflection contrast at much lower energies than its mirrorless case. By considering a GST225 metasurface operating in the near IR, our systematic numerical study finds improved reflection contrast (up to −32 dB, Q-factor 19.22 compared with 9.59 dB, Q-factor 11 for the mirrorless case). For the mirrored case, the thermal study finds faster crystallization (up to 6 times) at reduced reconfiguration thresholds (72 times lower) compared with the mirrorless case. This results in a more than 2 orders of magnitude higher device figure of merit [defined as the change in reflection contrast (in dB) to a corresponding change in optical energy (in nJ)] compared with the mirrorless case. The results are promising for high-performance metasurfaces at reduced switching energies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.