{"title":"First passage times for some classes of fractional time-changed diffusions","authors":"N. Leonenko, E. Pirozzi","doi":"10.1080/07362994.2021.1953386","DOIUrl":null,"url":null,"abstract":"Abstract We consider some time-changed diffusion processes obtained by applying the Doob transformation rule to a time-changed Brownian motion. The time-change is obtained via the inverse of an α-stable subordinator. These processes are specified in terms of time-changed Gauss-Markov processes and fractional time-changed diffusions. A fractional pseudo-Fokker-Planck equation for such processes is given. We investigate their first passage time densities providing a generalized integral equation they satisfy and some transformation rules. First passage time densities for time-changed Brownian motion and Ornstein-Uhlenbeck processes are provided in several forms. Connections with closed form results and numerical evaluations through the level zero are given.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"40 1","pages":"735 - 763"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07362994.2021.1953386","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2021.1953386","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We consider some time-changed diffusion processes obtained by applying the Doob transformation rule to a time-changed Brownian motion. The time-change is obtained via the inverse of an α-stable subordinator. These processes are specified in terms of time-changed Gauss-Markov processes and fractional time-changed diffusions. A fractional pseudo-Fokker-Planck equation for such processes is given. We investigate their first passage time densities providing a generalized integral equation they satisfy and some transformation rules. First passage time densities for time-changed Brownian motion and Ornstein-Uhlenbeck processes are provided in several forms. Connections with closed form results and numerical evaluations through the level zero are given.
期刊介绍:
Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.