{"title":"Optimal model averaging for divergent-dimensional Poisson regressions","authors":"Jiahui Zou, Wendung Wang, Xinyu Zhang, Guohua Zou","doi":"10.1080/07474938.2022.2047508","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a new model averaging method to address model uncertainty in Poisson regressions, allowing the dimension of covariates to increase with the sample size. We derive an unbiased estimator of the Kullback–Leibler (KL) divergence to choose averaging weights. We show that when all candidate models are misspecified, the proposed estimate is asymptotically optimal by achieving the least KL divergence among all possible averaging estimators. In another situation where correct models exist in the model space, our method can produce consistent coefficient estimates. We apply the proposed techniques to study the determinants and predict corporate innovation outcomes measured by the number of patents.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"775 - 805"},"PeriodicalIF":0.8000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2047508","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract This paper proposes a new model averaging method to address model uncertainty in Poisson regressions, allowing the dimension of covariates to increase with the sample size. We derive an unbiased estimator of the Kullback–Leibler (KL) divergence to choose averaging weights. We show that when all candidate models are misspecified, the proposed estimate is asymptotically optimal by achieving the least KL divergence among all possible averaging estimators. In another situation where correct models exist in the model space, our method can produce consistent coefficient estimates. We apply the proposed techniques to study the determinants and predict corporate innovation outcomes measured by the number of patents.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.