There are no exotic actions of diffeomorphism groups on 1-manifolds

Pub Date : 2020-03-16 DOI:10.4171/ggd/658
Lei Chen, Kathryn Mann
{"title":"There are no exotic actions of diffeomorphism groups on 1-manifolds","authors":"Lei Chen, Kathryn Mann","doi":"10.4171/ggd/658","DOIUrl":null,"url":null,"abstract":"Let $M$ be a manifold, $N$ a 1-dimensional manifold. Assuming $r \\neq \\dim(M)+1$, we show that any nontrivial homomorphism $\\rho: \\text{Diff}^r_c(M)\\to \\text{Homeo}(N)$ has a standard form: necessarily $M$ is $1$-dimensional, and there are countably many embeddings $\\phi_i: M\\to N$ with disjoint images such that the action of $\\rho$ is conjugate (via the product of the $\\phi_i$) to the diagonal action of $\\text{Diff}^r_c(M)$ on $M \\times M \\times ...$ on $\\bigcup_i \\phi_i(M)$, and trivial elsewhere. This solves a conjecture of Matsumoto. We also show that the groups $\\text{Diff}^r_c(M)$ have no countable index subgroups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $M$ be a manifold, $N$ a 1-dimensional manifold. Assuming $r \neq \dim(M)+1$, we show that any nontrivial homomorphism $\rho: \text{Diff}^r_c(M)\to \text{Homeo}(N)$ has a standard form: necessarily $M$ is $1$-dimensional, and there are countably many embeddings $\phi_i: M\to N$ with disjoint images such that the action of $\rho$ is conjugate (via the product of the $\phi_i$) to the diagonal action of $\text{Diff}^r_c(M)$ on $M \times M \times ...$ on $\bigcup_i \phi_i(M)$, and trivial elsewhere. This solves a conjecture of Matsumoto. We also show that the groups $\text{Diff}^r_c(M)$ have no countable index subgroups.
分享
查看原文
在1-流形上不存在微分同构群的奇异作用
设$M$是一个流形,$N$是一维流形。假设$r\neq\dim(M)+1$,我们证明了任何非平凡同态$\rho:\text{Diff}^r_c(M)\to\text{Homeo}(N)$都具有标准形式:$M$必然是$1$维,并且存在可计数多个具有不相交图像的嵌入$\phi_i:M\to N$,使得$\rho$的作用(通过$\phi_id$的乘积)与$\text{Diff}^r_c(M)$在$M\times M\timers…$上的对角作用共轭在$\bigcup_i\phi_i(M)$上,并且在其他地方是琐碎的。这解决了松本的一个猜想。我们还证明了群$\text{Diff}^r_c(M)$不具有可计数的索引子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信