Oscillation Behaviour of Solutions for a Class of a Discrete Nonlinear Fractional-Order Derivatives

Q4 Mathematics
G. Chatzarakis, A. George Maria Selvam, R. Janagaraj, G. Miliaras
{"title":"Oscillation Behaviour of Solutions for a Class of a Discrete Nonlinear Fractional-Order Derivatives","authors":"G. Chatzarakis, A. George Maria Selvam, R. Janagaraj, G. Miliaras","doi":"10.2478/tmmp-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract Based on the generalized Riccati transformation technique and some inequality, we study some oscillation behaviour of solutions for a class of a discrete nonlinear fractional-order derivative equation Δ[γ(ℓ)[α(ℓ)+β(ℓ)Δμu(ℓ)]η]+ϕ(ℓ)f[G(ℓ)]=0,ℓ∈Nℓ0+1−μ, \\[\\Delta [\\gamma (\\ell ){[\\alpha (\\ell ) + \\beta (\\ell ){\\Delta ^\\mu }u(\\ell )]^\\eta }] + \\phi (\\ell )f[G(\\ell )] = 0,\\ell \\in {N_{{\\ell _0} + 1 - \\mu }},\\] where ℓ0>0, G(ℓ)=∑j=ℓ0ℓ−1+μ(ℓ−j−1)(−μ)u(j)\\[{\\ell _0} > 0,\\quad G(\\ell ) = \\sum\\limits_{j = {\\ell _0}}^{\\ell - 1 + \\mu } {{{(\\ell - j - 1)}^{( - \\mu )}}u(j)} \\] and Δμ is the Riemann-Liouville (R-L) difference operator of the derivative of order μ, 0 < μ ≤ 1 and η is a quotient of odd positive integers. Illustrative examples are given to show the validity of the theoretical results.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"79 1","pages":"101 - 118"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Based on the generalized Riccati transformation technique and some inequality, we study some oscillation behaviour of solutions for a class of a discrete nonlinear fractional-order derivative equation Δ[γ(ℓ)[α(ℓ)+β(ℓ)Δμu(ℓ)]η]+ϕ(ℓ)f[G(ℓ)]=0,ℓ∈Nℓ0+1−μ, \[\Delta [\gamma (\ell ){[\alpha (\ell ) + \beta (\ell ){\Delta ^\mu }u(\ell )]^\eta }] + \phi (\ell )f[G(\ell )] = 0,\ell \in {N_{{\ell _0} + 1 - \mu }},\] where ℓ0>0, G(ℓ)=∑j=ℓ0ℓ−1+μ(ℓ−j−1)(−μ)u(j)\[{\ell _0} > 0,\quad G(\ell ) = \sum\limits_{j = {\ell _0}}^{\ell - 1 + \mu } {{{(\ell - j - 1)}^{( - \mu )}}u(j)} \] and Δμ is the Riemann-Liouville (R-L) difference operator of the derivative of order μ, 0 < μ ≤ 1 and η is a quotient of odd positive integers. Illustrative examples are given to show the validity of the theoretical results.
一类离散非线性分数阶导数解的振动性
摘要基于广义Riccati变换技术和一些不等式,研究了一类离散非线性分数阶导数方程Δ[γ(r)[α(r)+β(r)Δμu(r)]η]+ϕ(r)f[G(r)]=0, r∈N, r 0+1−μ, \[\Delta [\gamma (\ell ){[\alpha (\ell ) + \beta (\ell ){\Delta ^\mu }u(\ell )]^\eta }] + \phi (\ell )f[G(\ell )] = 0,\ell \in {N_{{\ell _0} + 1 - \mu }},\],其中,r 0>, G(r)=∑j= r 0, r (r)+ μ(r−j−1)(−μ)u(j) \[{\ell _0} > 0,\quad G(\ell ) = \sum\limits_{j = {\ell _0}}^{\ell - 1 + \mu } {{{(\ell - j - 1)}^{( - \mu )}}u(j)} \], Δμ是阶μ的导数的Riemann-Liouville (R-L)差分算子,0 < μ≤1,η是奇数正整数的商。通过算例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信