{"title":"Reactive balance to unanticipated trip-like perturbations: a treadmill-based study examining effect of aging and stroke on fall risk","authors":"Mansi P. Joshi, Prakruti Patel, T. Bhatt","doi":"10.1080/23335432.2018.1512375","DOIUrl":null,"url":null,"abstract":"ABSTRACT The purpose of this study was to examine the mechanism of fall risk in community-dwelling ambulatory hemiplegic stroke survivors when exposed to a sudden, trip-like support surface perturbation in standing. Participants (n = 14 / group) included stroke survivors, Age-similar older controls (AC), and Young controls (YC) experienced trip-like perturbation on a motorized treadmill. The primary outcomes were COM state control (measured as COM position (XCOM/BOS) and velocity (VCOM/BOS) relative to the base of support (BOS)) and the vertical limb support recorded as the extent of hip descent. All participants demonstrated forward loss of balance (FLOB) followed by an equal first compensatory step length. At step touchdown, stroke survivors demonstrated lower COM state stability and increased trunk flexion than the YC group. Stroke survivors also demonstrated greater hip descent than YC and AC groups, as they first stepped with their non-paretic limb. For the second compensatory step, the stroke survivors stepped with their paretic limb. However, unlike the AC group, they were unable to control VCOM/BOS despite a longer compensatory step. In conclusion, poor control of COM state, impaired trunk control and inability of the paretic limb to provide vertical limb support may explain the higher fall-risk in stroke survivors.","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":"5 1","pages":"75 - 87"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2018.1512375","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2018.1512375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT The purpose of this study was to examine the mechanism of fall risk in community-dwelling ambulatory hemiplegic stroke survivors when exposed to a sudden, trip-like support surface perturbation in standing. Participants (n = 14 / group) included stroke survivors, Age-similar older controls (AC), and Young controls (YC) experienced trip-like perturbation on a motorized treadmill. The primary outcomes were COM state control (measured as COM position (XCOM/BOS) and velocity (VCOM/BOS) relative to the base of support (BOS)) and the vertical limb support recorded as the extent of hip descent. All participants demonstrated forward loss of balance (FLOB) followed by an equal first compensatory step length. At step touchdown, stroke survivors demonstrated lower COM state stability and increased trunk flexion than the YC group. Stroke survivors also demonstrated greater hip descent than YC and AC groups, as they first stepped with their non-paretic limb. For the second compensatory step, the stroke survivors stepped with their paretic limb. However, unlike the AC group, they were unable to control VCOM/BOS despite a longer compensatory step. In conclusion, poor control of COM state, impaired trunk control and inability of the paretic limb to provide vertical limb support may explain the higher fall-risk in stroke survivors.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.