{"title":"Estimating the confidence interval of the regression coefficient of the blood sugar model through a multivariable linear spline with known variance","authors":"A. Islamiyati, Raupong, A. Kalondeng, Ummi Sari","doi":"10.2478/stattrans-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract Estimates from confidence intervals are more powerful than point estimates, because there are intervals for parameter values used to estimate populations. In relation to global conditions, involving issues such as type 2 diabetes mellitus, it is very difficult to make estimations limited to one point only. Therefore, in this article, we estimate confidence intervals in a truncated spline model for type 2 diabetes data. We use a non-parametric regression model through a multi-variable spline linear estimator. The use of the model results from the irregularity of the data, so it does not form a parametric pattern. Subsequently, we obtained the interval from beta parameter values for each predictor. Body mass index, HDL cholesterol, LDL cholesterol and triglycerides all have two regression coefficients at different intervals as the number of the found optimal knot points is one. This value is the interval for multivariable spline regression coefficients that can occur in a population of type 2 diabetes patients.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Estimates from confidence intervals are more powerful than point estimates, because there are intervals for parameter values used to estimate populations. In relation to global conditions, involving issues such as type 2 diabetes mellitus, it is very difficult to make estimations limited to one point only. Therefore, in this article, we estimate confidence intervals in a truncated spline model for type 2 diabetes data. We use a non-parametric regression model through a multi-variable spline linear estimator. The use of the model results from the irregularity of the data, so it does not form a parametric pattern. Subsequently, we obtained the interval from beta parameter values for each predictor. Body mass index, HDL cholesterol, LDL cholesterol and triglycerides all have two regression coefficients at different intervals as the number of the found optimal knot points is one. This value is the interval for multivariable spline regression coefficients that can occur in a population of type 2 diabetes patients.
期刊介绍:
Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.