Existence and stability criterion for the results of fractional order $ Phi_{p} $-Laplacian operator boundary value problem

IF 1.1 Q2 MATHEMATICS, APPLIED
Wadhah Ahmed Alsadi, Wadhah Mokhtar Hussein, T. Q. S. Abdullah
{"title":"Existence and stability criterion for the results of fractional order $ Phi_{p} $-Laplacian operator boundary value problem","authors":"Wadhah Ahmed Alsadi, Wadhah Mokhtar Hussein, T. Q. S. Abdullah","doi":"10.22034/CMDE.2021.32807.1580","DOIUrl":null,"url":null,"abstract":"In this literature, we study the existence and stability of the solution of the boundary value problem of fractional differential equations with  $ Phi_{p} $-Laplacian operator. Our problem is based on Caputo fractional derivative of orders $ sigma,epsilon$, where $ k- 1<sigma,epsilonleq k $, and $ kgeq3 $. By using the Schauder fixed point theory and properties of the Green function, some conditions are established which show the criterion of the existence and non-existence solution for the proposed problem. We also investigate some adequate conditions for the Hyers-Ulam stability of the solution. Illustrated examples are given as an application of our result.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.32807.1580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this literature, we study the existence and stability of the solution of the boundary value problem of fractional differential equations with  $ Phi_{p} $-Laplacian operator. Our problem is based on Caputo fractional derivative of orders $ sigma,epsilon$, where $ k- 1
分数阶$Phi_{p}$-Laplacian算子边值问题结果的存在性和稳定性准则
本文研究了具有$ Phi_{p} $-拉普拉斯算子的分数阶微分方程边值问题解的存在性和稳定性。我们的问题是基于阶$ sigma,epsilon$的Caputo分数导数,其中$ k- 1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信