Potential operators in modified Morrey spaces defined on Carleson curves

IF 0.3 Q4 MATHEMATICS
I.B. Dadashova , C. Aykol , Z. Cakir , A. Serbetci
{"title":"Potential operators in modified Morrey spaces defined on Carleson curves","authors":"I.B. Dadashova ,&nbsp;C. Aykol ,&nbsp;Z. Cakir ,&nbsp;A. Serbetci","doi":"10.1016/j.trmi.2017.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the potential operator <span><math><msubsup><mrow><mi>I</mi></mrow><mrow><mi>Γ</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span>, <span><math><mn>0</mn><mo>&lt;</mo><mn>1</mn></math></span> in the modified Morrey space <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>p</mi><mo>,</mo><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span> and the spaces <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span> defined on Carleson curves <span><math><mi>Γ</mi></math></span>. We prove that for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mo>∕</mo><mi>α</mi></math></span> the potential operator <span><math><msubsup><mrow><mi>I</mi></mrow><mrow><mi>Γ</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> is bounded from the modified Morrey space <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>p</mi><mo>,</mo><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span> to <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi><mo>,</mo><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span> if and in the case of infinite curve only if <span><math><mi>α</mi><mo>≤</mo><mn>1</mn><mo>∕</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>∕</mo><mi>q</mi><mo>≤</mo><mi>α</mi><mo>∕</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo></mrow></math></span>, and from the spaces <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span> to <span><math><mi>W</mi><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi><mo>,</mo><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span> if and in the case of infinite curve only if <span><math><mi>α</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><mo>≤</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>λ</mi></mrow></mfrac></math></span>. Furthermore, for the limiting case <span><math><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mo>∕</mo><mi>α</mi><mo>≤</mo><mi>p</mi><mo>≤</mo><mn>1</mn><mo>∕</mo><mi>α</mi></math></span> we show that if <span><math><mi>Γ</mi></math></span> is an infinite Carleson curve, then the modified potential operator <span><math><msubsup><mrow><mover><mrow><mi>I</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>Γ</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> is bounded from <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>p</mi><mo>,</mo><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span> to <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span>, and if <span><math><mi>Γ</mi></math></span> is a finite Carleson curve, then the operator <span><math><msubsup><mrow><mi>I</mi></mrow><mrow><mi>Γ</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math></span> is bounded from <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>p</mi><mo>,</mo><mi>λ</mi></mrow></msub><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span> to <span><math><mi>B</mi><mi>M</mi><mi>O</mi><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 1","pages":"Pages 15-29"},"PeriodicalIF":0.3000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.09.004","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217301022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we study the potential operator IΓα, 0<1 in the modified Morrey space L˜p,λ(Γ) and the spaces BMO(Γ) defined on Carleson curves Γ. We prove that for 1<p<(1λ)α the potential operator IΓα is bounded from the modified Morrey space L˜p,λ(Γ) to L˜q,λ(Γ) if and in the case of infinite curve only if α1p1qα(1λ), and from the spaces L˜1,λ(Γ) to WL˜q,λ(Γ) if and in the case of infinite curve only if α11qα1λ. Furthermore, for the limiting case (1λ)αp1α we show that if Γ is an infinite Carleson curve, then the modified potential operator I˜Γα is bounded from L˜p,λ(Γ) to BMO(Γ), and if Γ is a finite Carleson curve, then the operator IΓα is bounded from L˜p,λ(Γ) to BMO(Γ).

Carleson曲线上定义的修正Morrey空间中的势算子
本文研究了Carleson曲线Γ上定义的修正Morrey空间L ~ p,λ(Γ)和空间BMO(Γ)中的势算子IΓα, 0<1。证明了对于1<p<(1−λ)∕α,势算子IΓα从修正Morrey空间L ~ p,λ(Γ)到L ~ q,λ(Γ)有界,当且仅当α≤1∕p−1∕q≤α∕(1−λ),当且仅当无穷曲线时,从空间L ~ 1,λ(Γ)到空间WL ~ q,λ(Γ)有界,当且仅当无穷曲线时,α≤1−1q≤α1−λ。进一步,对于(1−λ)∕α≤p≤1∕α的极限情况,我们证明了如果Γ是无限Carleson曲线,则修正势算子I ~ Γα从L ~ p,λ(Γ)到BMO(Γ)有界,如果Γ是有限Carleson曲线,则算子IΓα从L ~ p,λ(Γ)到BMO(Γ)有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信