{"title":"A Data Mining Approach for Analysis of a Wire Electrical Discharge Machining Process","authors":"S. Dandge, S. Chakraborty","doi":"10.24425/mper.2021.138536","DOIUrl":null,"url":null,"abstract":"Wire electrical discharge machining (WEDM) is a non-conventional material-removal process where a continuously travelling electrically conductive wire is used as an electrode to erode material from a workpiece. To explore its fullest machining potential, there is always a requirement to examine the effects of its varied input parameters on the responses and resolve the best parametric setting. This paper proposes parametric analysis of a WEDM process by applying non-parametric decision tree algorithm, based on a past experimental dataset. Two decision tree-based classification methods, i.e. classification and regression tree (CART) and Chi-squared automatic interaction detection (CHAID) are considered here as the data mining tools to examine the influences of six WEDM process parameters on four responses, and identify the most preferred parametric mix to help in achieving the desired response values. The developed decision trees recognize pulse-on time as the most indicative WEDM process parameter impacting almost all the responses. Furthermore, a comparative analysis on the classification performance of CART and CHAID algorithms demonstrates the superiority of CART with higher overall classification accuracy and lower prediction risk.","PeriodicalId":45454,"journal":{"name":"Management and Production Engineering Review","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management and Production Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/mper.2021.138536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wire electrical discharge machining (WEDM) is a non-conventional material-removal process where a continuously travelling electrically conductive wire is used as an electrode to erode material from a workpiece. To explore its fullest machining potential, there is always a requirement to examine the effects of its varied input parameters on the responses and resolve the best parametric setting. This paper proposes parametric analysis of a WEDM process by applying non-parametric decision tree algorithm, based on a past experimental dataset. Two decision tree-based classification methods, i.e. classification and regression tree (CART) and Chi-squared automatic interaction detection (CHAID) are considered here as the data mining tools to examine the influences of six WEDM process parameters on four responses, and identify the most preferred parametric mix to help in achieving the desired response values. The developed decision trees recognize pulse-on time as the most indicative WEDM process parameter impacting almost all the responses. Furthermore, a comparative analysis on the classification performance of CART and CHAID algorithms demonstrates the superiority of CART with higher overall classification accuracy and lower prediction risk.
期刊介绍:
Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management.