{"title":"La version relative de la conjecture des périodes de Kontsevich-Zagier revisitée","authors":"J. Ayoub","doi":"10.2748/tmj/1568772181","DOIUrl":null,"url":null,"abstract":"Dans cette courte note, on remarque qu’une petite modification dans le calcul effectue dans [5] de l’algebre du torseur d’isomorphismes entre la realisation de Betti tangentielle et la realisation de De Rham resulte en un enonce du type Kontsevich–Zagier fonctionnel purement algebrique et nettement plus satisfaisant que l’enonce obtenu dans [5].\r\n\r\nIn this short note, we remark that a small modification in the computation made in [5] of the algebra of the torsor of isomorphisms between the tangential Betti realisation and the De Rham realisation results in a statement of functional Kontsevich–Zagier type which is purely algebraic and much more satisfactory than the statement obtained in [5].","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj/1568772181","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Dans cette courte note, on remarque qu’une petite modification dans le calcul effectue dans [5] de l’algebre du torseur d’isomorphismes entre la realisation de Betti tangentielle et la realisation de De Rham resulte en un enonce du type Kontsevich–Zagier fonctionnel purement algebrique et nettement plus satisfaisant que l’enonce obtenu dans [5].
In this short note, we remark that a small modification in the computation made in [5] of the algebra of the torsor of isomorphisms between the tangential Betti realisation and the De Rham realisation results in a statement of functional Kontsevich–Zagier type which is purely algebraic and much more satisfactory than the statement obtained in [5].
在这个简短的注释中,可以看到一小在微积分中[5]进行变更的l’algebre torseur d’isomorphismes之间实现poncelet Betti切和de Rham Kontsevich型出现在一个国家—纯功能性Zagier algebrique和远比l’enonce[5]中获得令人满意的。肖特In this, we,在于说明that In the small更改计算了made In algebra》[5]“torsor isomorphisms between the Betti poncelet tangential and the De Rham成就——《results In a functional Kontsevich—Zagier型which is purely algebraic and much more than the做出满意的声明应该乐意In[5]。