Fibrant resolutions for motivic Thom spectra

IF 0.5 Q3 MATHEMATICS
G. Garkusha, A. Neshitov
{"title":"Fibrant resolutions for motivic Thom spectra","authors":"G. Garkusha, A. Neshitov","doi":"10.2140/akt.2023.8.421","DOIUrl":null,"url":null,"abstract":"Using the theory of framed correspondences developed by Voevodsky [24] and the machinery of framed motives introduced and developed in [6], various explicit fibrant resolutions for a motivic Thom spectrum $E$ are constructed in this paper. It is shown that the bispectrum \n$$M_E^{\\mathbb G}(X)=(M_{E}(X),M_{E}(X)(1),M_{E}(X)(2),\\ldots),$$ each term of which is a twisted $E$-framed motive of $X$, introduced in the paper, represents $X_+\\wedge E$ in the category of bispectra. As a topological application, it is proved that the $E$-framed motive with finite coefficients $M_E(pt)(pt)/N$, $N>0$, of the point $pt=Spec (k)$ evaluated at $pt$ is a quasi-fibrant model of the topological $S^2$-spectrum $Re^\\epsilon(E)/N$ whenever the base field $k$ is algebraically closed of characteristic zero with an embedding $\\epsilon:k\\hookrightarrow\\mathbb C$. Furthermore, the algebraic cobordism spectrum $MGL$ is computed in terms of $\\Omega$-correspondences in the sense of [15]. It is also proved that $MGL$ is represented by a bispectrum each term of which is a sequential colimit of simplicial smooth quasi-projective varieties.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Using the theory of framed correspondences developed by Voevodsky [24] and the machinery of framed motives introduced and developed in [6], various explicit fibrant resolutions for a motivic Thom spectrum $E$ are constructed in this paper. It is shown that the bispectrum $$M_E^{\mathbb G}(X)=(M_{E}(X),M_{E}(X)(1),M_{E}(X)(2),\ldots),$$ each term of which is a twisted $E$-framed motive of $X$, introduced in the paper, represents $X_+\wedge E$ in the category of bispectra. As a topological application, it is proved that the $E$-framed motive with finite coefficients $M_E(pt)(pt)/N$, $N>0$, of the point $pt=Spec (k)$ evaluated at $pt$ is a quasi-fibrant model of the topological $S^2$-spectrum $Re^\epsilon(E)/N$ whenever the base field $k$ is algebraically closed of characteristic zero with an embedding $\epsilon:k\hookrightarrow\mathbb C$. Furthermore, the algebraic cobordism spectrum $MGL$ is computed in terms of $\Omega$-correspondences in the sense of [15]. It is also proved that $MGL$ is represented by a bispectrum each term of which is a sequential colimit of simplicial smooth quasi-projective varieties.
动力光谱的分辨率
利用Voevodsky提出的框架对应理论(b[24])和b[6]中引入和发展的框架动机机制(b[6]),为动机谱提供了各种明确的纤维分辨率 $E$ 是本文所构建的。结果表明,双谱 $$M_E^{\mathbb G}(X)=(M_{E}(X),M_{E}(X)(1),M_{E}(X)(2),\ldots),$$ 每一项都是扭曲的 $E$-框架动机 $X$,表示 $X_+\wedge E$ 在双谱范畴内。作为拓扑应用,证明了 $E$有限系数-框架动机 $M_E(pt)(pt)/N$, $N>0$说到点子上 $pt=Spec (k)$ 评估于 $pt$ 准纤维模型是拓扑的吗 $S^2$-谱 $Re^\epsilon(E)/N$ 每当垒场 $k$ 特征零在代数上闭合吗 $\epsilon:k\hookrightarrow\mathbb C$. 进一步讨论了代数协协谱 $MGL$ 是用 $\Omega$-[15]意义上的对应。也证明了 $MGL$ 用一个双谱表示,它的每一项是简单光滑拟射影变体的一个序列极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信