Singular stochastic integral operators

IF 1.9 1区 数学 Q1 MATHEMATICS
E. Lorist, M. Veraar
{"title":"Singular stochastic integral operators","authors":"E. Lorist, M. Veraar","doi":"10.2140/apde.2021.14.1443","DOIUrl":null,"url":null,"abstract":"In this paper we introduce Calder\\'on-Zygmund theory for singular stochastic integrals with operator-valued kernel. In particular, we prove $L^p$-extrapolation results under a H\\\"ormander condition on the kernel. Sparse domination and sharp weighted bounds are obtained under a Dini condition on the kernel, leading to a stochastic version of the solution to the $A_2$-conjecture. The results are applied to obtain $p$-independence and weighted bounds for stochastic maximal $L^p$-regularity both in the complex and real interpolation scale. As a consequence we obtain several new regularity results for the stochastic heat equation on $\\mathbb{R}^d$ and smooth and angular domains.","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2021.14.1443","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper we introduce Calder\'on-Zygmund theory for singular stochastic integrals with operator-valued kernel. In particular, we prove $L^p$-extrapolation results under a H\"ormander condition on the kernel. Sparse domination and sharp weighted bounds are obtained under a Dini condition on the kernel, leading to a stochastic version of the solution to the $A_2$-conjecture. The results are applied to obtain $p$-independence and weighted bounds for stochastic maximal $L^p$-regularity both in the complex and real interpolation scale. As a consequence we obtain several new regularity results for the stochastic heat equation on $\mathbb{R}^d$ and smooth and angular domains.
奇异随机积分算子
本文介绍了含算子值核的奇异随机积分的Calder - on-Zygmund理论。特别地,我们证明了在核的H阶条件下的L^p -外推结果。在核上的一个Dini条件下,得到了稀疏支配和尖锐加权界,从而得到了$A_2$-猜想解的随机版本。将所得结果应用于复插值尺度和实插值尺度下随机最大L^p$正则性的p$无关性和加权界。因此,我们得到了$\mathbb{R}^d$和光滑和角域上随机热方程的几个新的正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信