{"title":"On non-compact gradient solitons","authors":"Antonio W. Cunha, Erin Griffin","doi":"10.1007/s10455-023-09904-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we extend existing results for generalized solitons, called <i>q</i>-solitons, to the complete case by considering non-compact solitons. By placing regularity conditions on the vector field <i>X</i> and curvature conditions on <i>M</i>, we are able to use the chosen properties of the tensor <i>q</i> to see that such non-compact <i>q</i>-solitons are stationary and <i>q</i>-flat. We conclude by applying our results to the examples of ambient obstruction solitons, Cotton solitons, and Bach solitons to demonstrate the utility of these general theorems for various flows.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09904-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we extend existing results for generalized solitons, called q-solitons, to the complete case by considering non-compact solitons. By placing regularity conditions on the vector field X and curvature conditions on M, we are able to use the chosen properties of the tensor q to see that such non-compact q-solitons are stationary and q-flat. We conclude by applying our results to the examples of ambient obstruction solitons, Cotton solitons, and Bach solitons to demonstrate the utility of these general theorems for various flows.