Negative Powers of Contractions Having a Strong AA+ Spectrum

Q3 Mathematics
J. Esterle
{"title":"Negative Powers of Contractions Having a Strong AA+ Spectrum","authors":"J. Esterle","doi":"10.2478/mjpaa-2023-0015","DOIUrl":null,"url":null,"abstract":"Abstract Zarrabi proved in 1993 that if the spectrum of a contraction T on a Banach space is a countable subset of the unit circle 𝕋, and if limn→+∞log(‖ T−n ‖)n=0 {\\lim _{n \\to + \\infty }}{{\\log \\left( {\\left\\| {{T^{ - n}}} \\right\\|} \\right)} \\over {\\sqrt n }} = 0 , then T is an isometry, so that ‖Tn‖ = 1 for every n ∈ ℤ. It is also known that if C is the usual triadic Cantor set then every contraction T on a Banach space such that Spec(T ) ⊂ 𝒞 satisfying lim supn→+∞log(‖ T−n ‖)nα<+∞ \\lim \\,su{p_{n \\to + \\infty }}{{\\log \\left( {\\left\\| {{T^{ - n}}} \\right\\|} \\right)} \\over {{n^\\alpha }}} < + \\infty for some α<log(3)−log(2)2 log(3)−log(2) \\alpha < {{\\log \\left( 3 \\right) - \\log \\left( 2 \\right)} \\over {2\\,\\log \\left( 3 \\right) - \\log \\left( 2 \\right)}} is an isometry. In the other direction an easy refinement of known results shows that if a closed E ⊂ 𝕋 is not a “strong AA+-set” then for every sequence (un)n≥1 of positive real numbers such that lim infn→+∞un = + ∞ there exists a contraction T on some Banach space such that Spec(T )⊂ E, ‖T−n‖ = O(un) as n → + ∞ and supn≥1 ‖T−n‖ = + ∞. We show conversely that if E ⊂ 𝕋 is a strong AA+-set then there exists a nondecreasing unbounded sequence (un)n≥1 such that for every contraction T on a Banach space satsfying Spec(T) ⊂ E and ‖T−n ‖ = O(un) as n → + ∞ we have supn>0 ‖T−n ‖ ≤ K, where K < + ∞ denotes the “AA+-constant” of E (closed countanble subsets of 𝕋 and the triadic Cantor set are strong AA+-sets of constant 1).","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"209 - 215"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Zarrabi proved in 1993 that if the spectrum of a contraction T on a Banach space is a countable subset of the unit circle 𝕋, and if limn→+∞log(‖ T−n ‖)n=0 {\lim _{n \to + \infty }}{{\log \left( {\left\| {{T^{ - n}}} \right\|} \right)} \over {\sqrt n }} = 0 , then T is an isometry, so that ‖Tn‖ = 1 for every n ∈ ℤ. It is also known that if C is the usual triadic Cantor set then every contraction T on a Banach space such that Spec(T ) ⊂ 𝒞 satisfying lim supn→+∞log(‖ T−n ‖)nα<+∞ \lim \,su{p_{n \to + \infty }}{{\log \left( {\left\| {{T^{ - n}}} \right\|} \right)} \over {{n^\alpha }}} < + \infty for some α0 ‖T−n ‖ ≤ K, where K < + ∞ denotes the “AA+-constant” of E (closed countanble subsets of 𝕋 and the triadic Cantor set are strong AA+-sets of constant 1).
具有强AA+谱的负收缩力
Zarrabi(1993)证明了如果Banach空间上的一个收缩T的谱是单位圆的一个可数子集,并且如果limn→+∞log(‖T−n‖)n=0 {\lim _n{\to + \infty}}{{\log\left ({\left \ {{bbb_t ^{ - n }}}\right \| }\right) }\over{\sqrt n}}=0,则T是一个等距,使得对于每一个n∈0,‖Tn‖= 1。我们还知道,如果C是通常的三元康托集,则在Banach空间上的每一个收缩T,使得Spec(T)∧满足lim supn→+∞log(‖T−n‖)nα0‖T−n‖≤K,其中K < +∞表示E的“AA+常数”(K的闭可数子集和三元康托集是常数1的强AA+集)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信