Critical Kirchhoff-type equation with singular potential

Pub Date : 2023-06-23 DOI:10.12775/tmna.2022.051
Yujian Su, Senli Liu
{"title":"Critical Kirchhoff-type equation with singular potential","authors":"Yujian Su, Senli Liu","doi":"10.12775/tmna.2022.051","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the following Kirchhoff-type equation:\n\\begin{equation*}\n-\\bigg(1\n+\\int_{\\mathbb{R}^{3}}|\\nabla u|^{2}dx\\bigg)\n\\Delta u\n+\\frac{A}{|x|^{\\alpha}}u\n=f(u),\\quad x\\in\\mathbb{R}^{3},\n\\end{equation*}\nwhere $A> 0$ is a real parameter and $\\alpha\\in(0,1)\\cup ({4}/{3},2)$.\nRemark that $f(u)=|u|^{2_{\\alpha}^{*}-2}u +\\lambda|u|^{q-2}u\n+|u|^{4}u$,\nwhere $\\lambda> 0$, $q\\in(2_{\\alpha}^{*},6)$,\n$2_{\\alpha}^{*}=2+{4\\alpha}/({4-\\alpha})$\nis the embedding bottom index, and $6$ is the embedding top index and Sobolev critical exponent.\nWe point out that the nonlinearity $f$ is the almost ``optimal'' choice.\nFirst, for $\\alpha\\in({4}/{3},2)$, applying the generalized version of Lions-type\n theorem and the Nehari manifold, we show the existence of nonnegative\nNehari-type ground sate solution for above equation. Second, for $\\alpha\\in(0,1)$,\n using the generalized version of Lions-type theorem and the Poho\\v{z}aev\n manifold, we establish the existence of nonnegative Poho\\v{z}aev-type ground\nstate solution for above equation. Based on our new generalized version\nof Lions-type theorem, our works extend the results in Li-Su [Z. Angew. Math. Phys. {\\bf 66} (2015)].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with the following Kirchhoff-type equation: \begin{equation*} -\bigg(1 +\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\bigg) \Delta u +\frac{A}{|x|^{\alpha}}u =f(u),\quad x\in\mathbb{R}^{3}, \end{equation*} where $A> 0$ is a real parameter and $\alpha\in(0,1)\cup ({4}/{3},2)$. Remark that $f(u)=|u|^{2_{\alpha}^{*}-2}u +\lambda|u|^{q-2}u +|u|^{4}u$, where $\lambda> 0$, $q\in(2_{\alpha}^{*},6)$, $2_{\alpha}^{*}=2+{4\alpha}/({4-\alpha})$ is the embedding bottom index, and $6$ is the embedding top index and Sobolev critical exponent. We point out that the nonlinearity $f$ is the almost ``optimal'' choice. First, for $\alpha\in({4}/{3},2)$, applying the generalized version of Lions-type theorem and the Nehari manifold, we show the existence of nonnegative Nehari-type ground sate solution for above equation. Second, for $\alpha\in(0,1)$, using the generalized version of Lions-type theorem and the Poho\v{z}aev manifold, we establish the existence of nonnegative Poho\v{z}aev-type ground state solution for above equation. Based on our new generalized version of Lions-type theorem, our works extend the results in Li-Su [Z. Angew. Math. Phys. {\bf 66} (2015)].
分享
查看原文
具有奇异势的临界kirchhoff型方程
在本文中,我们处理了以下Kirchhoff型方程:begin{方程*}-\bigg(1+\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\bigg)\Delta u+\frac{A}{|x|^{\alpha}}u=f(u),quad x\in\mathbb{R}^{3},\end{方程*},其中$A>0$是实参数,$\alpha\in(0,1)\cup({4}/{3},2)$。注意$f(u|^{q-2}u+|u|^{4}u$,其中$\lambda>0$,$q\in(2_{\alpha}^{*},6)$,$2_{\aalpha}^{*}=2+{4\alpha}/({4-\alpha})$是嵌入底部索引,$6$是嵌入顶部索引和Sobolev临界指数。我们指出非线性$f$是几乎“最优”的选择。首先,对于({4}/{3},2)$中的$\alpha\,应用Lions型定理的广义形式和Nehari流形,我们证明了上述方程的非负Nehari型基态解的存在性。其次,对于$\alpha\in(0,1)$,使用Lions型定理的广义版本和Poho\v{z}aev流形,我们建立了非负Poho\v的存在性{z}aev-type上述方程的基态解。基于我们新的Lions型定理的广义版本,我们的工作扩展了李素[Z.Angew.Math.Phys.{\bf 66}(2015)]中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信