{"title":"What it means to be alive: a synthetic cell perspective","authors":"Y. Elani, J. Seddon","doi":"10.1098/rsfs.2023.0036","DOIUrl":null,"url":null,"abstract":"Advances in bottom-up synthetic biology offer the exciting—albeit contentious—prospect of transitioning bio-science researchers from passive observers of life to potential creators of it. Synthetic cells closely emulate the attributes of their biological counterparts. These rationally designed microsystems exhibit emergent properties and life-like functionalities. They can therefore be used as simplified cell models to decipher the rules of life, and as programmable biologically powered micromachines for application in healthcare and biotechnology more broadly. While there is a consensus that current synthetic cells are not yet ‘living’, the question of what defines ‘aliveness’ is gaining increasing relevance. Exploring this concept necessitates a multidisciplinary approach, where scientists from across domains in the physical, life, engineering and social sciences participate in community-level discussions, together with the acceptance of a set of criteria which defines a living system. Achieving a widely accepted definition of ‘living’ represents a possible mission-oriented endpoint to the synthetic cell endeavour, uniting the community towards a common goal. As the field evolves, researchers must address regulatory, ethical, societal and public perception implications, while fostering collaborative efforts to harness the transformative potential of synthetic cells.","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0036","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in bottom-up synthetic biology offer the exciting—albeit contentious—prospect of transitioning bio-science researchers from passive observers of life to potential creators of it. Synthetic cells closely emulate the attributes of their biological counterparts. These rationally designed microsystems exhibit emergent properties and life-like functionalities. They can therefore be used as simplified cell models to decipher the rules of life, and as programmable biologically powered micromachines for application in healthcare and biotechnology more broadly. While there is a consensus that current synthetic cells are not yet ‘living’, the question of what defines ‘aliveness’ is gaining increasing relevance. Exploring this concept necessitates a multidisciplinary approach, where scientists from across domains in the physical, life, engineering and social sciences participate in community-level discussions, together with the acceptance of a set of criteria which defines a living system. Achieving a widely accepted definition of ‘living’ represents a possible mission-oriented endpoint to the synthetic cell endeavour, uniting the community towards a common goal. As the field evolves, researchers must address regulatory, ethical, societal and public perception implications, while fostering collaborative efforts to harness the transformative potential of synthetic cells.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.