Limit of Weierstrass measure on stable curves

IF 1.3 1区 数学 Q1 MATHEMATICS
Ngai-fung Ng, Sai-Kee Yeung
{"title":"Limit of Weierstrass measure on stable curves","authors":"Ngai-fung Ng, Sai-Kee Yeung","doi":"10.4310/jdg/1668186789","DOIUrl":null,"url":null,"abstract":"The goal of the paper is to study the limiting behavior of the Weierstrass measures on a smooth curve of genus $g\\geqslant 2$ as the curve approaches a certain nodal stable curve represented by a point in the Deligne-Mumford compactification $\\overline{\\mathcal M}_g$ of the moduli $\\mathcal{M}_g$, including irreducible ones or those of compact type. As a consequence, the Weierstrass measures on a stable rational curve at the boundary of $\\mathcal{M}_g$ are completely determined. In the process, the asymptotic behavior of the Bergman measure is also studied.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1668186789","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the paper is to study the limiting behavior of the Weierstrass measures on a smooth curve of genus $g\geqslant 2$ as the curve approaches a certain nodal stable curve represented by a point in the Deligne-Mumford compactification $\overline{\mathcal M}_g$ of the moduli $\mathcal{M}_g$, including irreducible ones or those of compact type. As a consequence, the Weierstrass measures on a stable rational curve at the boundary of $\mathcal{M}_g$ are completely determined. In the process, the asymptotic behavior of the Bergman measure is also studied.
稳定曲线上Weierstrass测度的极限
本文的目的是研究Weierstrass测度在亏格$g\geqslant 2$的光滑曲线上的极限行为,当该曲线接近由模$\mathcal的Deligne-Mumford紧化$\overline{\mathcal M}_g$中的一个点表示的某个节点稳定曲线时{M}_g$,包括不可约的或紧致型的。因此,Weierstrass在$\mathcal边界的稳定有理曲线上测量{M}_g$已完全确定。在此过程中,还研究了Bergman测度的渐近性态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信