{"title":"The Construction and Optimization of an AI Education Evaluation Indicator Based on Intelligent Algorithms","authors":"Yuansheng Zeng, Xing Xu","doi":"10.4018/ijcini.315275","DOIUrl":null,"url":null,"abstract":"The basic tool in the analytic hierarchy process (AHP) is the complete judgment matrix. To address the weakness of the AHP in determining weight in the comprehensive evaluation system, the particle swarm optimization (PSO)-AHP model proposed in this paper is based on the PSO in the meta-heuristic algorithm. The model was used to solve the indicator weights in the evaluation system of AI education in primary and secondary schools in Fujian Province and was compared with the genetic algorithm and war strategy optimization algorithm. From the comparison results, the PSO-AHP optimization is more effective among the three algorithms, and the indicator consistency can be improved by about 30%. They are both effective in solving the problem that once the judgment matrix is given in the AHP, the weights and indicator consistency cannot be improved. Finally, the results were tested by Friedman statistics to prove the viability of the proposed algorithm.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.315275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The basic tool in the analytic hierarchy process (AHP) is the complete judgment matrix. To address the weakness of the AHP in determining weight in the comprehensive evaluation system, the particle swarm optimization (PSO)-AHP model proposed in this paper is based on the PSO in the meta-heuristic algorithm. The model was used to solve the indicator weights in the evaluation system of AI education in primary and secondary schools in Fujian Province and was compared with the genetic algorithm and war strategy optimization algorithm. From the comparison results, the PSO-AHP optimization is more effective among the three algorithms, and the indicator consistency can be improved by about 30%. They are both effective in solving the problem that once the judgment matrix is given in the AHP, the weights and indicator consistency cannot be improved. Finally, the results were tested by Friedman statistics to prove the viability of the proposed algorithm.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.