Fulvio Valenza, Erisa Karafili, Rodrigo Vieira Steiner, Emil C. Lupu
{"title":"A Hybrid Threat Model for Smart Systems","authors":"Fulvio Valenza, Erisa Karafili, Rodrigo Vieira Steiner, Emil C. Lupu","doi":"10.1109/TDSC.2022.3213577","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately, identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combines the cyber, physical, and human aspects. Our model represents the system's components relations and security properties by taking into consideration these three aspects. Together with the threat model we also propose a threat analysis method that allows understanding the security state of the system's components. The threat model and the threat analysis have been implemented into an automatic tool, called TAMELESS, that automatically analyzes threats to the system, verifies its security properties, and generates a graphical representation, useful for security architects to identify the proper prevention/mitigation solutions. We show and prove the use of our threat model and analysis with three cases studies from different sectors.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4403-4417"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3213577","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2
Abstract
Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately, identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combines the cyber, physical, and human aspects. Our model represents the system's components relations and security properties by taking into consideration these three aspects. Together with the threat model we also propose a threat analysis method that allows understanding the security state of the system's components. The threat model and the threat analysis have been implemented into an automatic tool, called TAMELESS, that automatically analyzes threats to the system, verifies its security properties, and generates a graphical representation, useful for security architects to identify the proper prevention/mitigation solutions. We show and prove the use of our threat model and analysis with three cases studies from different sectors.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.